File size: 23,062 Bytes
e9f148d
4711b94
 
 
dccede6
4711b94
 
 
 
 
 
dccede6
4711b94
e9f148d
 
 
4711b94
 
 
356f877
4711b94
 
 
 
 
356f877
4711b94
 
 
 
356f877
 
 
 
 
 
 
 
 
 
4711b94
 
 
 
356f877
4711b94
 
356f877
4711b94
 
356f877
 
4711b94
 
 
356f877
 
4711b94
356f877
 
 
 
 
 
 
4711b94
356f877
 
4711b94
 
356f877
4711b94
356f877
4711b94
 
356f877
 
 
 
 
e9f148d
 
 
 
 
4711b94
356f877
 
 
4711b94
 
356f877
 
 
 
 
 
4711b94
 
356f877
 
4711b94
356f877
4711b94
 
 
356f877
4711b94
 
 
356f877
 
 
 
 
 
4711b94
 
 
 
 
 
356f877
4711b94
356f877
4711b94
 
 
 
 
 
 
 
 
 
 
 
356f877
4711b94
356f877
 
 
 
 
 
 
 
 
 
 
 
 
4711b94
 
 
 
 
 
 
 
 
 
 
356f877
4711b94
 
 
356f877
4711b94
 
 
 
 
 
 
 
 
 
 
 
356f877
 
 
 
 
 
 
 
 
 
 
4711b94
 
 
 
 
356f877
 
4711b94
356f877
4711b94
356f877
4711b94
 
 
 
 
 
 
 
 
 
 
 
 
 
356f877
4711b94
e9f148d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4711b94
 
 
356f877
4711b94
 
 
 
 
356f877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4711b94
356f877
 
 
4711b94
356f877
4711b94
 
 
e9f148d
4711b94
 
 
 
e9f148d
4711b94
356f877
4711b94
 
 
 
 
 
 
356f877
e9f148d
4711b94
 
 
 
 
 
 
356f877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dccede6
e9f148d
dccede6
 
356f877
dccede6
e9f148d
 
 
 
 
 
 
 
 
 
dccede6
 
 
 
 
 
 
356f877
4711b94
356f877
e9f148d
356f877
 
 
e9f148d
 
356f877
 
 
 
 
 
 
 
 
4711b94
356f877
 
e9f148d
 
 
 
 
 
 
 
 
 
 
 
356f877
e9f148d
 
 
 
 
 
 
356f877
 
e9f148d
356f877
 
 
 
 
 
4711b94
 
 
e9f148d
 
 
356f877
 
e9f148d
356f877
e9f148d
 
 
 
 
 
356f877
 
e9f148d
356f877
 
 
 
e9f148d
 
 
 
 
 
356f877
 
e9f148d
356f877
 
 
 
 
e9f148d
356f877
 
 
e9f148d
 
 
 
 
 
 
 
 
356f877
 
 
 
 
e9f148d
356f877
 
 
e9f148d
356f877
 
 
 
 
 
 
4711b94
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import uuid
import streamlit as st
import io
import os

from transformers import pipeline
import torch
import yt_dlp
from silero_vad import load_silero_vad, get_speech_timestamps
import numpy as np
import pydub
from litellm import completion

# --- Language List ---
LANGUAGES = ['english', 'chinese', 'german', 'spanish', 'russian', 'korean', 'french', 'japanese', 'portuguese', 'turkish', 'polish', 'catalan', 'dutch', 'arabic', 'swedish', 'italian', 'indonesian', 'hindi', 'finnish', 'vietnamese', 'hebrew', 'ukrainian', 'greek', 'malay', 'czech', 'romanian', 'danish', 'hungarian', 'tamil', 'norwegian', 'thai', 'urdu', 'croatian', 'bulgarian', 'lithuanian', 'latin', 'maori', 'malayalam', 'welsh', 'slovak', 'telugu', 'persian', 'latvian', 'bengali', 'serbian', 'azerbaijani', 'slovenian', 'kannada', 'estonian', 'macedonian', 'breton', 'basque', 'icelandic', 'armenian', 'nepali', 'mongolian', 'bosnian', 'kazakh', 'albanian', 'swahili', 'galician', 'marathi', 'punjabi', 'sinhala', 'khmer', 'shona', 'yoruba', 'somali', 'afrikaans', 'occitan', 'georgian', 'belarusian', 'tajik', 'sindhi', 'gujarati', 'amharic', 'yiddish', 'lao', 'uzbek', 'faroese', 'haitian creole', 'pashto', 'turkmen', 'nynorsk', 'maltese', 'sanskrit', 'luxembourgish', 'myanmar', 'tibetan', 'tagalog', 'malagasy', 'assamese', 'tatar', 'hawaiian', 'lingala', 'hausa', 'bashkir', 'javanese', 'sundanese', 'cantonese', 'burmese', 'valencian', 'flemish', 'haitian', 'letzeburgesch', 'pushto', 'panjabi', 'moldavian', 'moldovan', 'sinhalese', 'castilian', 'mandarin']

# --- Model Loading and Caching ---
@st.cache_resource
def load_transcriber(_device):
    """Loads the Whisper transcription model."""
    transcriber = pipeline(model="openai/whisper-large-v3-turbo", device=_device)
    return transcriber

@st.cache_resource
def load_vad_model():
    """Loads the Silero VAD model."""
    return load_silero_vad()

# --- Audio Processing Functions ---
@st.cache_resource
def download_and_convert_audio(video_url, audio_format="wav"):
    """Downloads and converts audio from a YouTube video.

    Args:
        video_url (str): The URL of the YouTube video.
        audio_format (str): The desired audio format (e.g., "wav", "mp3").

    Returns:
        tuple: (audio_bytes, audio_format, info_dict) or (None, None, None) on error.
    """
    status_message = st.empty()
    status_message.text("Downloading audio...")
    try:
        ydl_opts = {
            'format': f'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': audio_format,
            }],
            'outtmpl': '%(id)s.%(ext)s',
            'noplaylist': True,
            'progress_hooks': [lambda d: update_download_progress(d, status_message)],
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(video_url, download=False)
            if 'entries' in info:
                info = info['entries'][0]
            video_id = info['id']
            filename = f"{video_id}.{audio_format}"

            audio_formats = [f for f in info.get('formats', []) if f.get('acodec') != 'none' and f.get('vcodec') == 'none']
            if not audio_formats:
                st.warning(f"No audio-only format found. Downloading and converting from best video format to {audio_format}.")
                ydl_opts['format'] = 'best'

            ydl.download([video_url])
            status_message.text(f"Audio downloaded and converted to {audio_format}.")

            with open(filename, 'rb') as audio_file:
                audio_bytes = audio_file.read()

            os.remove(filename)
            return audio_bytes, audio_format, info
    except Exception as e:
        st.error(f"Error during download or conversion: {e}")
        return None, None, None

def update_download_progress(d, status_message):
    """Updates the download progress in the Streamlit UI."""
    if d['status'] == 'downloading':
        if 'total_bytes' in d and d['total_bytes'] is not None:
            p = round(d['downloaded_bytes'] / d['total_bytes'] * 100)
            status_message.text(f"Downloading: {p}%")
        else:
            status_message.text("Downloading...")

@st.cache_data
def split_audio_by_vad(audio_data: bytes, ext: str, _vad_model, sensitivity: float, max_duration: int = 30, return_seconds: bool = True):
    """Splits audio into chunks based on voice activity detection (VAD).

    Args:
        audio_data (bytes): The audio data as bytes.
        ext (str): The audio file extension.
        _vad_model: The VAD model.
        sensitivity (float): The VAD sensitivity (0.0 to 1.0).
        max_duration (int): The maximum duration of each chunk in seconds.
        return_seconds (bool): Whether to return timestamps in seconds.

    Returns:
        list: A list of dictionaries, where each dictionary represents an audio chunk.
              Returns an empty list if no speech segments are detected or an error occurs.
    """
    
    if not audio_data:
        st.error("No audio data received.")
        return []

    try:
        audio = pydub.AudioSegment.from_file(io.BytesIO(audio_data), format=ext)
        rate = audio.frame_rate
        
        # Convert to mono if stereo for compatibility with VAD
        if audio.channels > 1:
            audio = audio.set_channels(1)

        # Calculate dynamic VAD parameters based on sensitivity
        window_size_samples = int(512 + (1536 - 512) * (1 - sensitivity))
        speech_threshold = 0.5 + (0.95 - 0.5) * sensitivity
        
        samples = np.array(audio.get_array_of_samples())

        speech_timestamps = get_speech_timestamps(
            samples,
            _vad_model,
            sampling_rate=rate,
            return_seconds=return_seconds,
            window_size_samples=window_size_samples,
            threshold=speech_threshold,
        )

        if not speech_timestamps:
            st.warning("No speech segments detected.")
            return []

        speech_timestamps[0]["start"] = 0.
        speech_timestamps[-1]['end'] = audio.duration_seconds
        for i, chunk in enumerate(speech_timestamps[1:], start=1):
            chunk["start"] = speech_timestamps[i - 1]['end']

        aggregated_segments = []
        if speech_timestamps:
            current_segment_start = speech_timestamps[0]['start']
            current_segment_end = speech_timestamps[0]['end']
            for segment in speech_timestamps[1:]:
                if segment['start'] - current_segment_start >= max_duration:
                    aggregated_segments.append({'start': current_segment_start, 'end': current_segment_end})
                    current_segment_start = segment['start']
                    current_segment_end = segment['end']
                else:
                    current_segment_end = segment['end']
            aggregated_segments.append({'start': current_segment_start, 'end': current_segment_end})
        
        if not aggregated_segments:
            return []

        chunks = []
        for segment in aggregated_segments:
            start_ms = int(segment['start'] * 1000)
            end_ms = int(segment['end'] * 1000)
            chunk = audio[start_ms:end_ms]
            chunk_io = io.BytesIO()
            chunk.export(chunk_io, format=ext)
            chunks.append({
                'data': chunk_io.getvalue(),
                'start': segment['start'],
                'end': segment['end']
            })
            chunk_io.close()
        return chunks
    except Exception as e:
        st.error(f"Error processing audio in split_audio_by_vad: {str(e)}")
        return []
    finally:
        if 'audio' in locals():
            del audio
        if 'samples' in locals():
            del samples

@st.cache_data
def transcribe_batch(batch, _transcriber, language=None):
    """Transcribes a batch of audio chunks.

    Args:
        batch (list): A list of audio chunk dictionaries.
        _transcriber: The transcription model.
        language (str, optional): The language of the audio (e.g., "en", "es"). Defaults to None (auto-detection).

    Returns:
        list: A list of dictionaries, each containing the transcription, start, and end time of a chunk.
              Returns an empty list if an error occurs.
    """
    transcriptions = []
    for i, chunk_data in enumerate(batch):
        try:
            generate_kwargs = {
                "task": "transcribe",
                "return_timestamps": True,
                "language": language
            }

            transcription = _transcriber(
                chunk_data['data'],
                generate_kwargs=generate_kwargs
            )
            transcriptions.append({
                'text': transcription["text"],
                'start': chunk_data['start'],
                'end': chunk_data['end']}
            )
        except Exception as e:
            st.error(f"Error transcribing chunk {i}: {str(e)}")
            return []
    return transcriptions

# --- Streamlit App ---
def setup_ui():
    """Sets up the Streamlit user interface."""
    st.title("YouTube Video Transcriber")
    st.caption("This app allows you to transcribe YouTube videos and format the transcription using a large language model. You can also download the audio and video.")

    with st.sidebar:
        st.header("Input")
        video_url = st.text_input("YouTube Video Link:", key="video_url", help="Enter the URL of the YouTube video you want to transcribe.")

        st.header("Options")
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            transcribe_option = st.checkbox("Transcribe", value=True, help="Transcribe the audio of the video.")
        with col2:
            download_audio_option = st.checkbox("Download Audio", value=False, help="Download the audio of the video.")
        with col3:
            download_video_option = st.checkbox("Download Video", value=False, help="Download the video.")
        with col4:
            format_option = st.checkbox("Format Text", value=True, help="Format the transcription for better readability using a language model.")

        with st.expander("Advanced Settings"):
            language = st.selectbox("Language", options= ["Auto-Detect"] + LANGUAGES, format_func=lambda x: x.title(), help="Select the language of the audio for better transcription accuracy. Select 'Auto-Detect' to let the model determine the language.")
            batch_size = st.number_input("Batch Size", min_value=1, value=2, key="batch_size", help="The number of audio chunks to process at once during transcription.")
            vad_sensitivity = st.slider("VAD Sensitivity", min_value=0.0, max_value=1.0, value=0.1, step=0.05, key="vad_sensitivity", help="Adjust the sensitivity of the Voice Activity Detection (VAD) model. Higher values mean more sensitive to speech.")

            # Use session state to manage audio format selection and reset
            if 'reset_audio_format' not in st.session_state:
                st.session_state.reset_audio_format = False

            if 'audio_format' not in st.session_state or st.session_state.reset_audio_format:
                st.session_state.audio_format = "wav"  # Default value
                st.session_state.reset_audio_format = False

            audio_format = st.selectbox("Audio Format", ["wav", "mp3", "ogg", "flac"], key="audio_format_widget", index=["wav", "mp3", "ogg", "flac"].index(st.session_state.audio_format), help="Select the desired audio format for download.")
            st.session_state.audio_format = audio_format
            
            if download_video_option:
                video_format = st.selectbox("Video Format", ["mp4", "webm"], index=0, key="video_format", help="Select the desired video format for download.")
            else:
                video_format = "mp4"

        process_button = st.button("Process")

    return video_url, language, batch_size, transcribe_option, download_audio_option, download_video_option, process_button, vad_sensitivity, audio_format, video_format, format_option

@st.cache_resource
def initialize_models():
    """Initializes the transcription and VAD models."""
    device = "cuda" if torch.cuda.is_available() else "cpu"
    transcriber = load_transcriber(device)
    vad_model = load_vad_model()
    return transcriber, vad_model

def process_transcription(video_url, vad_sensitivity, batch_size, transcriber, vad_model, audio_format, language=None):
    """Downloads, processes, and transcribes the audio from a YouTube video.

    Args:
        video_url (str): The URL of the YouTube video.
        vad_sensitivity (float): The VAD sensitivity.
        batch_size (int): The batch size for transcription.
        transcriber: The transcription model.
        vad_model: The VAD model.
        language (str, optional): The language of the audio. Defaults to None.

    Returns:
        tuple: (full_transcription, audio_data, audio_format, info) or (None, None, None, None) on error.
    """
    audio_data, audio_format, info = download_and_convert_audio(video_url, audio_format)
    if not audio_data:
        return None, None, None, None

    chunks = split_audio_by_vad(audio_data, audio_format, vad_model, vad_sensitivity)
    if not chunks:
        return None, None, None, None

    total_chunks = len(chunks)
    transcriptions = []
    progress_bar = st.progress(0, "Transcribing...")
    for i in range(0, total_chunks, batch_size):
        batch = chunks[i:i + batch_size]
        batch_transcriptions = transcribe_batch(batch, transcriber, language)
        transcriptions.extend(batch_transcriptions)
        progress_bar.progress((i + len(batch)) / total_chunks, f"Transcribing... {i + len(batch)}/{total_chunks} chunks done")

    progress_bar.empty()
    st.success("Transcription complete!")

    full_transcription = ""
    for chunk in transcriptions:
        start_time = format_seconds(chunk['start'])
        end_time = format_seconds(chunk['end'])
        full_transcription += f"[{start_time} - {end_time}]: {chunk['text'].strip()}\n\n"

    return full_transcription, audio_data, audio_format, info

def format_seconds(seconds):
    """Formats seconds into HH:MM:SS string."""
    minutes, seconds = divmod(seconds, 60)
    hours, minutes = divmod(minutes, 60)
    return f"{int(hours):02}:{int(minutes):02}:{int(seconds):02}"

def download_video(video_url, video_format):
    """Downloads video from YouTube using yt-dlp."""
    status_message = st.empty()
    status_message.text("Downloading video...")
    try:
        ydl_opts = {
            'format': f'bestvideo[ext={video_format}]+bestaudio[ext=m4a]/best[ext={video_format}]/best',
            'outtmpl': '%(title)s.%(ext)s',
            'noplaylist': True,
            'progress_hooks': [lambda d: update_download_progress(d, status_message)],
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info_dict = ydl.extract_info(video_url, download=True)
            video_filename = ydl.prepare_filename(info_dict)
            video_title = info_dict.get("title", "video")
            status_message.text(f"Video downloaded: {video_title}")

            with open(video_filename, 'rb') as video_file:
                video_bytes = video_file.read()

            os.remove(video_filename)

            return video_bytes, video_filename, info_dict
    except Exception as e:
        st.error(f"Error during video download: {e}")
        return None, None, None

def format_transcript(input_transcription):
    """Formats the transcription using the Gemini large language model."""

    # os.environ["GEMINI_API_KEY"] = "..."

    sys_prompt = """
    *   Format the provided video transcription as a polished piece of written text.
*   **The output must be in the same language as the input; do not translate it.**
*   Focus on clarity, readability, and consistency, adhering to the conventions of that specific language.
*   Restructure sentences for improved flow and correct grammatical errors.
*   **Edits should strictly enhance readability without altering the original meaning or nuances of the raw transcription.**
*   Italicize or quote any text that is read aloud, clearly distinguishing it from the surrounding explanations.
*   Eliminate unnecessary repetitions unless they are used for emphasis.
*   **Do not add any information not present in the original transcript.**
*   **Do not remove timestamps.**
*   **Output only the formatted transcription.**
    """.strip()
    messages = [{"content": sys_prompt, "role": "system"},
                 {"content": f"Format the following video transcription: {input_transcription}", "role": "user"}]

    response = completion(model="gemini/gemini-2.0-flash-exp", messages=messages)
    formatted_text = response.choices[0].message.content
    return formatted_text

def main():
    """Main function to run the Streamlit application."""
    st.set_page_config(layout="wide")
    # Initialize session state variables
    if 'full_transcription' not in st.session_state:
        st.session_state.full_transcription = None
    if 'formatted_transcription' not in st.session_state:
        st.session_state.formatted_transcription = None
    if 'audio_data' not in st.session_state:
        st.session_state.audio_data = None
    if 'info' not in st.session_state:
        st.session_state.info = None
    if 'video_data' not in st.session_state:
        st.session_state.video_data = None
    if 'video_filename' not in st.session_state:
        st.session_state.video_filename = None

    transcriber, vad_model = initialize_models()
    
    # Call setup_ui() to get UI element values
    video_url, language, batch_size, transcribe_option, download_audio_option, download_video_option, process_button, vad_sensitivity, audio_format, video_format, format_option = setup_ui()

    # Validate options
    if not transcribe_option and not download_audio_option and not download_video_option and not format_option:
        st.error("Please select at least one option.")
        return
    if format_option and not transcribe_option:
        st.error("Please select the transcription option to format the transcript.")
        return

    transcription_output = st.empty()
    formatted_transcription_output = st.empty()
    if st.session_state.full_transcription:
        transcription_output.text_area("Transcription:", value=st.session_state.full_transcription, height=300, key=uuid.uuid4())
        if format_option:
          if st.session_state.formatted_transcription:
            formatted_transcription_output.text_area("Formatted Transcription:", value=st.session_state.formatted_transcription, height=300, key=uuid.uuid4())
          else:
            formatted_transcription_output.text_area("Formatted Transcription:", value="No formatting was done on this transcription", height=300, key=uuid.uuid4())
        
    if process_button:
        st.session_state.full_transcription = None
        st.session_state.formatted_transcription = None
        st.session_state.audio_data = None
        st.session_state.info = None
        st.session_state.video_data = None
        st.session_state.video_filename = None
        st.session_state.reset_audio_format = True

        if not video_url:
            st.error("Please enter a YouTube video link.")
            return
        
        # Handle language auto-detection
        selected_language = language.lower() if language != "Auto-Detect" else None

        if transcribe_option:
            st.session_state.full_transcription, st.session_state.audio_data, st.session_state.audio_format, st.session_state.info = process_transcription(video_url, vad_sensitivity, batch_size, transcriber, vad_model, audio_format, selected_language)
            if st.session_state.full_transcription:
                transcription_output.text_area("Transcription:", value=st.session_state.full_transcription, height=300, key=uuid.uuid4())
                if format_option:
                  st.session_state.formatted_transcription = format_transcript(st.session_state.full_transcription)
                  formatted_transcription_output.text_area("Formatted Transcription:", value=st.session_state.formatted_transcription, height=300, key=uuid.uuid4())
                else:
                  st.session_state.formatted_transcription = None

        if download_audio_option:
            if st.session_state.audio_data is None or st.session_state.audio_format is None:
                st.session_state.audio_data, st.session_state.audio_format, st.session_state.info = download_and_convert_audio(video_url, audio_format)

        if download_video_option:
            st.session_state.video_data, st.session_state.video_filename, st.session_state.info = download_video(video_url, video_format)
            # Handle cases where st.session_state.info is None due to download errors
            if st.session_state.info is None:
                st.error("Could not retrieve video information. Please check the video URL and try again.")
                # Reset video_data and video_filename to prevent further errors
                st.session_state.video_data = None
                st.session_state.video_filename = None

    # Download button logic (moved after setup_ui() call)
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        if st.session_state.full_transcription and transcribe_option:
            st.download_button(
                label="Download Transcription (TXT)",
                data=st.session_state.full_transcription,
                file_name=f"{st.session_state.info['id'] if st.session_state.info else 'transcription'}.txt",
                mime="text/plain"
            )
    with col2:
        if st.session_state.formatted_transcription and format_option:
            st.download_button(
                label="Download Formatted Transcription (TXT)",
                data=st.session_state.formatted_transcription,
                file_name=f"{st.session_state.info['id'] if st.session_state.info else 'formatted_transcription'}.txt",
                mime="text/plain"
            )

    with col3:
        # Now download_audio_option is defined
        if st.session_state.audio_data is not None and download_audio_option:
            st.download_button(
                label=f"Download Audio ({st.session_state.audio_format})",
                data=st.session_state.audio_data,
                file_name=f"{st.session_state.info['id'] if st.session_state.info else 'audio'}.{st.session_state.audio_format}",
                mime=f"audio/{st.session_state.audio_format}"
            )

    with col4:
        if st.session_state.video_data is not None and download_video_option:
            st.download_button(
                label="Download Video",
                data=st.session_state.video_data,
                file_name=st.session_state.video_filename,
                mime=f"video/{video_format}"
            )

if __name__ == "__main__":
    main()