Update app.py
Browse files
app.py
CHANGED
@@ -1,138 +1,31 @@
|
|
1 |
-
import os
|
2 |
-
import ffmpeg
|
3 |
-
import whisper
|
4 |
-
import streamlit as st
|
5 |
-
from groq import Groq
|
6 |
-
|
7 |
-
# Set the app title and description with styling
|
8 |
-
st.set_page_config(page_title="Audio/Video Transcription & Summarization", page_icon="๐๏ธ")
|
9 |
-
st.title("๐๏ธ Audio/Video Transcription & Summarization")
|
10 |
-
st.write("Easily upload an audio or video file to get a transcription and a quick summary.")
|
11 |
-
|
12 |
-
# Add a sidebar for settings and instructions
|
13 |
-
with st.sidebar:
|
14 |
-
st.header("Settings")
|
15 |
-
st.write("Configure app preferences here.")
|
16 |
-
enable_summary = st.checkbox("Enable Summarization", value=True)
|
17 |
-
st.info("Note: Summarization uses the Groq API.")
|
18 |
-
|
19 |
-
# Retrieve the API key from environment variables or Streamlit secrets
|
20 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
21 |
-
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
22 |
-
|
23 |
-
# Create a temporary directory
|
24 |
-
temp_dir = "temp"
|
25 |
-
os.makedirs(temp_dir, exist_ok=True)
|
26 |
-
|
27 |
-
# Display file uploader with improved layout and style
|
28 |
-
st.subheader("Upload Audio/Video File")
|
29 |
-
uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
30 |
-
|
31 |
-
# Function to extract audio from video
|
32 |
-
def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
|
33 |
-
"""Extracts audio from video."""
|
34 |
-
try:
|
35 |
-
# Run ffmpeg command with stderr capture for better error handling
|
36 |
-
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
37 |
-
except ffmpeg.Error as e:
|
38 |
-
st.error("Error processing file with FFmpeg: " + e.stderr.decode())
|
39 |
-
return audio_path
|
40 |
-
|
41 |
-
# Function to transcribe audio using Whisper model
|
42 |
-
def transcribe_audio(audio_path):
|
43 |
-
"""Transcribes audio to text using Whisper model."""
|
44 |
-
model = whisper.load_model("base")
|
45 |
-
result = model.transcribe(audio_path)
|
46 |
-
return result["text"]
|
47 |
-
|
48 |
-
# Function to summarize text using Groq API
|
49 |
-
def summarize_text(text):
|
50 |
-
"""Summarizes text using Groq API."""
|
51 |
-
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
52 |
-
response = client.chat.completions.create(
|
53 |
-
messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
|
54 |
-
model="llama3-8b-8192"
|
55 |
-
)
|
56 |
-
summary = response.choices[0].message.content
|
57 |
-
return summary
|
58 |
-
|
59 |
-
# Main processing function with progress indicators
|
60 |
-
def process_media(media_file):
|
61 |
-
"""Processes audio or video: extracts audio, transcribes it, and summarizes the transcription if enabled."""
|
62 |
-
# Save the uploaded file to a temporary path
|
63 |
-
temp_file_path = os.path.join(temp_dir, media_file.name)
|
64 |
-
with open(temp_file_path, "wb") as f:
|
65 |
-
f.write(media_file.getbuffer())
|
66 |
-
|
67 |
-
# Determine if the file is a video or audio
|
68 |
-
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
69 |
-
st.info("Extracting audio from video...")
|
70 |
-
audio_path = extract_audio(temp_file_path)
|
71 |
-
else:
|
72 |
-
audio_path = temp_file_path # If already audio, use it as is
|
73 |
-
|
74 |
-
# Transcribe audio to text with progress spinner
|
75 |
-
with st.spinner("Transcribing audio..."):
|
76 |
-
transcription = transcribe_audio(audio_path)
|
77 |
-
st.success("Transcription completed!")
|
78 |
-
st.write("### Transcription:")
|
79 |
-
st.write(transcription)
|
80 |
-
|
81 |
-
# Summarize transcription if enabled
|
82 |
-
if enable_summary:
|
83 |
-
with st.spinner("Generating summary..."):
|
84 |
-
summary = summarize_text(transcription)
|
85 |
-
st.success("Summary generated!")
|
86 |
-
st.write("### Summary:")
|
87 |
-
st.write(summary)
|
88 |
-
|
89 |
-
# Cleanup temporary files
|
90 |
-
os.remove(temp_file_path)
|
91 |
-
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
92 |
-
os.remove(audio_path)
|
93 |
-
|
94 |
-
# Run the app and handle file upload state
|
95 |
-
if uploaded_file is not None:
|
96 |
-
st.info("Processing your file...")
|
97 |
-
process_media(uploaded_file)
|
98 |
-
else:
|
99 |
-
st.warning("Please upload an audio or video file to begin.")
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
# # # Set your Groq API key here or use environment variable
|
114 |
-
# # GROQ_API_TOKEN = os.getenv("groq_api")
|
115 |
-
# # client = Groq(api_key=GROQ_API_TOKEN)
|
116 |
-
|
117 |
# import os
|
118 |
# import ffmpeg
|
119 |
# import whisper
|
120 |
# import streamlit as st
|
121 |
# from groq import Groq
|
122 |
|
123 |
-
# # Set the title and description
|
124 |
-
# st.
|
125 |
-
# st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# # Retrieve the API key from environment variables or Streamlit secrets
|
128 |
# GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
129 |
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
130 |
|
131 |
-
# # Create a temporary directory
|
132 |
# temp_dir = "temp"
|
133 |
# os.makedirs(temp_dir, exist_ok=True)
|
134 |
|
135 |
-
# #
|
|
|
136 |
# uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
137 |
|
138 |
# # Function to extract audio from video
|
@@ -142,13 +35,13 @@ else:
|
|
142 |
# # Run ffmpeg command with stderr capture for better error handling
|
143 |
# ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
144 |
# except ffmpeg.Error as e:
|
145 |
-
# st.error("
|
146 |
# return audio_path
|
147 |
|
148 |
-
# # Function to transcribe audio
|
149 |
# def transcribe_audio(audio_path):
|
150 |
# """Transcribes audio to text using Whisper model."""
|
151 |
-
# model = whisper.load_model("base")
|
152 |
# result = model.transcribe(audio_path)
|
153 |
# return result["text"]
|
154 |
|
@@ -163,131 +56,212 @@ else:
|
|
163 |
# summary = response.choices[0].message.content
|
164 |
# return summary
|
165 |
|
166 |
-
# #
|
167 |
# def process_media(media_file):
|
168 |
-
# """Processes audio or video: extracts audio, transcribes it, and summarizes the transcription."""
|
169 |
# # Save the uploaded file to a temporary path
|
170 |
# temp_file_path = os.path.join(temp_dir, media_file.name)
|
171 |
# with open(temp_file_path, "wb") as f:
|
172 |
# f.write(media_file.getbuffer())
|
173 |
|
174 |
-
# # Determine if the file is a video or audio
|
175 |
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
176 |
-
#
|
177 |
# audio_path = extract_audio(temp_file_path)
|
178 |
# else:
|
179 |
-
# audio_path = temp_file_path # If
|
180 |
|
181 |
-
# #
|
182 |
-
#
|
|
|
|
|
183 |
# st.write("### Transcription:")
|
184 |
# st.write(transcription)
|
185 |
|
186 |
-
# #
|
187 |
-
#
|
188 |
-
#
|
189 |
-
#
|
190 |
-
|
191 |
-
#
|
|
|
|
|
|
|
192 |
# os.remove(temp_file_path)
|
193 |
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
194 |
# os.remove(audio_path)
|
195 |
|
196 |
-
# # Run the app
|
197 |
# if uploaded_file is not None:
|
|
|
198 |
# process_media(uploaded_file)
|
199 |
# else:
|
200 |
-
# st.warning("Please upload
|
201 |
|
202 |
|
203 |
|
204 |
|
205 |
-
# ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
206 |
|
207 |
|
208 |
|
209 |
|
210 |
-
# import os
|
211 |
-
# import ffmpeg
|
212 |
-
# import whisper
|
213 |
-
# import streamlit as st
|
214 |
-
# from groq import Groq
|
215 |
|
216 |
-
# # Set the title and description of the app
|
217 |
-
# st.title("Audio/Video Transcription and Summarization")
|
218 |
-
# st.write("Upload your audio or video file, and this app will transcribe the audio and provide a summary of the transcription.")
|
219 |
|
220 |
-
# # Get the API key from user input (You may want to use Streamlit secrets management)
|
221 |
-
# GROQ_API_KEY = st.text_input("Enter your Groq API Key:")
|
222 |
-
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
227 |
|
228 |
-
#
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
#
|
232 |
-
|
233 |
-
|
234 |
-
# try:
|
235 |
-
# # Run ffmpeg command with stderr capture for better error handling
|
236 |
-
# ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
237 |
-
# except ffmpeg.Error as e:
|
238 |
-
# st.error("FFmpeg error encountered: " + e.stderr.decode())
|
239 |
-
# return audio_path
|
240 |
|
241 |
-
#
|
242 |
-
|
243 |
-
|
244 |
-
# model = whisper.load_model("base") # Load the Whisper model
|
245 |
-
# result = model.transcribe(audio_path)
|
246 |
-
# return result["text"]
|
247 |
|
248 |
-
#
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
# )
|
256 |
-
# summary = response.choices[0].message.content
|
257 |
-
# return summary
|
258 |
|
259 |
-
#
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
|
267 |
-
#
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
# audio_path = temp_file_path # If it's already audio, use it as is
|
273 |
|
274 |
-
#
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
-
#
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
288 |
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import os
|
2 |
# import ffmpeg
|
3 |
# import whisper
|
4 |
# import streamlit as st
|
5 |
# from groq import Groq
|
6 |
|
7 |
+
# # Set the app title and description with styling
|
8 |
+
# st.set_page_config(page_title="Audio/Video Transcription & Summarization", page_icon="๐๏ธ")
|
9 |
+
# st.title("๐๏ธ Audio/Video Transcription & Summarization")
|
10 |
+
# st.write("Easily upload an audio or video file to get a transcription and a quick summary.")
|
11 |
+
|
12 |
+
# # Add a sidebar for settings and instructions
|
13 |
+
# with st.sidebar:
|
14 |
+
# st.header("Settings")
|
15 |
+
# st.write("Configure app preferences here.")
|
16 |
+
# enable_summary = st.checkbox("Enable Summarization", value=True)
|
17 |
+
# st.info("Note: Summarization uses the Groq API.")
|
18 |
|
19 |
# # Retrieve the API key from environment variables or Streamlit secrets
|
20 |
# GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
21 |
# os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
22 |
|
23 |
+
# # Create a temporary directory
|
24 |
# temp_dir = "temp"
|
25 |
# os.makedirs(temp_dir, exist_ok=True)
|
26 |
|
27 |
+
# # Display file uploader with improved layout and style
|
28 |
+
# st.subheader("Upload Audio/Video File")
|
29 |
# uploaded_file = st.file_uploader("Choose an audio or video file...", type=["mp4", "mov", "avi", "mkv", "wav", "mp3"])
|
30 |
|
31 |
# # Function to extract audio from video
|
|
|
35 |
# # Run ffmpeg command with stderr capture for better error handling
|
36 |
# ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
37 |
# except ffmpeg.Error as e:
|
38 |
+
# st.error("Error processing file with FFmpeg: " + e.stderr.decode())
|
39 |
# return audio_path
|
40 |
|
41 |
+
# # Function to transcribe audio using Whisper model
|
42 |
# def transcribe_audio(audio_path):
|
43 |
# """Transcribes audio to text using Whisper model."""
|
44 |
+
# model = whisper.load_model("base")
|
45 |
# result = model.transcribe(audio_path)
|
46 |
# return result["text"]
|
47 |
|
|
|
56 |
# summary = response.choices[0].message.content
|
57 |
# return summary
|
58 |
|
59 |
+
# # Main processing function with progress indicators
|
60 |
# def process_media(media_file):
|
61 |
+
# """Processes audio or video: extracts audio, transcribes it, and summarizes the transcription if enabled."""
|
62 |
# # Save the uploaded file to a temporary path
|
63 |
# temp_file_path = os.path.join(temp_dir, media_file.name)
|
64 |
# with open(temp_file_path, "wb") as f:
|
65 |
# f.write(media_file.getbuffer())
|
66 |
|
67 |
+
# # Determine if the file is a video or audio
|
68 |
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
69 |
+
# st.info("Extracting audio from video...")
|
70 |
# audio_path = extract_audio(temp_file_path)
|
71 |
# else:
|
72 |
+
# audio_path = temp_file_path # If already audio, use it as is
|
73 |
|
74 |
+
# # Transcribe audio to text with progress spinner
|
75 |
+
# with st.spinner("Transcribing audio..."):
|
76 |
+
# transcription = transcribe_audio(audio_path)
|
77 |
+
# st.success("Transcription completed!")
|
78 |
# st.write("### Transcription:")
|
79 |
# st.write(transcription)
|
80 |
|
81 |
+
# # Summarize transcription if enabled
|
82 |
+
# if enable_summary:
|
83 |
+
# with st.spinner("Generating summary..."):
|
84 |
+
# summary = summarize_text(transcription)
|
85 |
+
# st.success("Summary generated!")
|
86 |
+
# st.write("### Summary:")
|
87 |
+
# st.write(summary)
|
88 |
+
|
89 |
+
# # Cleanup temporary files
|
90 |
# os.remove(temp_file_path)
|
91 |
# if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
92 |
# os.remove(audio_path)
|
93 |
|
94 |
+
# # Run the app and handle file upload state
|
95 |
# if uploaded_file is not None:
|
96 |
+
# st.info("Processing your file...")
|
97 |
# process_media(uploaded_file)
|
98 |
# else:
|
99 |
+
# st.warning("Please upload an audio or video file to begin.")
|
100 |
|
101 |
|
102 |
|
103 |
|
|
|
104 |
|
105 |
|
106 |
|
107 |
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
110 |
|
111 |
+
import os
|
112 |
+
import ffmpeg
|
113 |
+
import whisper
|
114 |
+
import streamlit as st
|
115 |
+
from groq import Groq
|
116 |
|
117 |
+
# Custom CSS for styling
|
118 |
+
st.markdown("""
|
119 |
+
<style>
|
120 |
+
/* Background gradient and color settings */
|
121 |
+
.stApp {
|
122 |
+
background-image: linear-gradient(to right, #2e2e2e, #454545);
|
123 |
+
color: white;
|
124 |
+
font-family: Arial, sans-serif;
|
125 |
+
}
|
126 |
+
/* Container box styling */
|
127 |
+
.container {
|
128 |
+
background-color: #333;
|
129 |
+
padding: 2rem;
|
130 |
+
border-radius: 10px;
|
131 |
+
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.4);
|
132 |
+
}
|
133 |
+
/* Header styling */
|
134 |
+
.header {
|
135 |
+
color: #ffdd40;
|
136 |
+
text-align: center;
|
137 |
+
font-size: 2.5rem;
|
138 |
+
margin-bottom: 1.5rem;
|
139 |
+
}
|
140 |
+
/* Subheader styling */
|
141 |
+
.subheader {
|
142 |
+
color: #f0f0f0;
|
143 |
+
text-align: center;
|
144 |
+
font-size: 1.2rem;
|
145 |
+
margin-bottom: 2rem;
|
146 |
+
}
|
147 |
+
/* Button styling */
|
148 |
+
.stButton>button {
|
149 |
+
background-color: #ffdd40;
|
150 |
+
color: #333;
|
151 |
+
border-radius: 5px;
|
152 |
+
padding: 0.6rem 1.5rem;
|
153 |
+
font-size: 1rem;
|
154 |
+
font-weight: bold;
|
155 |
+
}
|
156 |
+
.stButton>button:hover {
|
157 |
+
background-color: #ffcc00;
|
158 |
+
color: #222;
|
159 |
+
}
|
160 |
+
/* Footer styling */
|
161 |
+
.footer {
|
162 |
+
text-align: center;
|
163 |
+
color: #cfcfcf;
|
164 |
+
font-size: 0.9rem;
|
165 |
+
margin-top: 2rem;
|
166 |
+
}
|
167 |
+
</style>
|
168 |
+
""", unsafe_allow_html=True)
|
169 |
+
|
170 |
+
# App title and description with styling
|
171 |
+
st.markdown("<div class='header'>๐๏ธ Audio/Video Transcription & Summarization</div>", unsafe_allow_html=True)
|
172 |
+
st.markdown("<div class='subheader'>Upload an audio or video file to get a transcription and a concise summary.</div>", unsafe_allow_html=True)
|
173 |
+
|
174 |
+
# Sidebar for settings and instructions
|
175 |
+
with st.sidebar:
|
176 |
+
st.header("Settings")
|
177 |
+
st.write("Customize your preferences:")
|
178 |
+
enable_summary = st.checkbox("Enable Summarization", value=True)
|
179 |
+
st.info("Note: Summarization uses the Groq API.")
|
180 |
|
181 |
+
# Retrieve the API key from environment variables or Streamlit secrets
|
182 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY") or st.secrets["GROQ_API_KEY"]
|
183 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
# Create a temporary directory
|
186 |
+
temp_dir = "temp"
|
187 |
+
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
|
|
|
188 |
|
189 |
+
# Enhanced file upload area
|
190 |
+
st.markdown("<div class='container'>", unsafe_allow_html=True)
|
191 |
+
uploaded_file = st.file_uploader(
|
192 |
+
label="Select an audio or video file",
|
193 |
+
type=["mp4", "mov", "avi", "mkv", "wav", "mp3"],
|
194 |
+
help="Supported formats: mp4, mov, avi, mkv, wav, mp3"
|
195 |
+
)
|
|
|
|
|
|
|
196 |
|
197 |
+
# Function to extract audio from video
|
198 |
+
def extract_audio(video_path, audio_path="temp/temp_audio.wav"):
|
199 |
+
try:
|
200 |
+
ffmpeg.input(video_path).output(audio_path).run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
201 |
+
except ffmpeg.Error as e:
|
202 |
+
st.error("Error processing file with FFmpeg: " + e.stderr.decode())
|
203 |
+
return audio_path
|
204 |
|
205 |
+
# Function to transcribe audio using Whisper model
|
206 |
+
def transcribe_audio(audio_path):
|
207 |
+
model = whisper.load_model("base")
|
208 |
+
result = model.transcribe(audio_path)
|
209 |
+
return result["text"]
|
|
|
210 |
|
211 |
+
# Function to summarize text using Groq API
|
212 |
+
def summarize_text(text):
|
213 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
214 |
+
response = client.chat.completions.create(
|
215 |
+
messages=[{"role": "user", "content": f"Summarize the following text: {text}"}],
|
216 |
+
model="llama3-8b-8192"
|
217 |
+
)
|
218 |
+
summary = response.choices[0].message.content
|
219 |
+
return summary
|
220 |
+
|
221 |
+
# Main processing function with progress indicators
|
222 |
+
def process_media(media_file):
|
223 |
+
temp_file_path = os.path.join(temp_dir, media_file.name)
|
224 |
+
with open(temp_file_path, "wb") as f:
|
225 |
+
f.write(media_file.getbuffer())
|
226 |
+
|
227 |
+
# Extract audio if the file is a video
|
228 |
+
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
229 |
+
st.info("Extracting audio from video...")
|
230 |
+
audio_path = extract_audio(temp_file_path)
|
231 |
+
else:
|
232 |
+
audio_path = temp_file_path
|
233 |
+
|
234 |
+
# Transcribe audio
|
235 |
+
with st.spinner("Transcribing audio..."):
|
236 |
+
transcription = transcribe_audio(audio_path)
|
237 |
+
st.success("Transcription completed!")
|
238 |
+
st.write("### Transcription:")
|
239 |
+
st.write(transcription)
|
240 |
|
241 |
+
# Summarize transcription if enabled
|
242 |
+
if enable_summary:
|
243 |
+
with st.spinner("Generating summary..."):
|
244 |
+
summary = summarize_text(transcription)
|
245 |
+
st.success("Summary generated!")
|
246 |
+
st.write("### Summary:")
|
247 |
+
st.write(summary)
|
248 |
|
249 |
+
# Cleanup
|
250 |
+
os.remove(temp_file_path)
|
251 |
+
if media_file.name.endswith(('.mp4', '.mov', '.avi', '.mkv')):
|
252 |
+
os.remove(audio_path)
|
253 |
+
|
254 |
+
if uploaded_file:
|
255 |
+
st.info("Processing your file, please wait...")
|
256 |
+
process_media(uploaded_file)
|
257 |
+
else:
|
258 |
+
st.warning("Please upload an audio or video file to begin.")
|
259 |
+
|
260 |
+
# Footer with branding
|
261 |
+
st.markdown("""
|
262 |
+
<div class="footer">
|
263 |
+
© 2024 TranscribePro. Developed by Abdullah Zunorain.
|
264 |
+
</div>
|
265 |
+
""", unsafe_allow_html=True)
|
266 |
+
|
267 |
+
st.markdown("</div>", unsafe_allow_html=True)
|