xcczach's picture
Upload 73 files
35c1cfd verified
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import os
import sys
import time
from typing import Any, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
from python_speech_features import logfbank
from scipy.io import wavfile
DBG=True if len(sys.argv) == 1 else False
if DBG:
import utils as custom_utils
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "DEBUG").upper(),
stream=sys.stdout,
)
else:
from . import utils as custom_utils
logger = logging.getLogger(__name__)
def load_audio_visual(manifest_path, max_keep, min_keep, frame_rate, label_paths, label_rates, tol=0.1):
def is_audio_label_aligned(audio_dur, label_durs):
return all([abs(audio_dur - label_dur)<tol for label_dur in label_durs])
n_long, n_short, n_unaligned = 0, 0, 0
names, inds, sizes = [], [], []
dur_from_label_list = []
is_seq_label = any([x==-1 for x in label_rates])
for label_path, label_rate in zip(label_paths, label_rates):
label_lengths = [len(line.rstrip().split())/label_rate for line in open(label_path).readlines()]
dur_from_label_list.append(label_lengths)
dur_from_label_list = list(zip(*dur_from_label_list))
with open(manifest_path) as f:
root = f.readline().strip()
for ind, line in enumerate(f):
items = line.strip().split("\t")
sz = int(items[-2]) #
if min_keep is not None and sz < min_keep:
n_short += 1
elif max_keep is not None and sz > max_keep:
n_long += 1
elif (not is_seq_label) and (not is_audio_label_aligned(sz/frame_rate, dur_from_label_list[ind])):
n_unaligned += 1
else:
video_path = items[1]
audio_path = items[2]
audio_id = items[0]
names.append((video_path, audio_path+':'+audio_id))
inds.append(ind)
sizes.append(sz)
tot = ind + 1
logger.info(
(
f"max_keep={max_keep}, min_keep={min_keep}, "
f"loaded {len(names)}, skipped {n_short} short and {n_long} long and {n_unaligned} unaligned, "
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
)
)
return root, names, inds, tot, sizes
def load_label(label_path, inds, tot):
with open(label_path) as f:
labels = [line.rstrip() for line in f]
assert (
len(labels) == tot
), f"number of labels does not match ({len(labels)} != {tot})"
labels = [labels[i] for i in inds]
return labels
def load_label_offset(label_path, inds, tot):
with open(label_path) as f:
code_lengths = [len(line.encode("utf-8")) for line in f]
assert (
len(code_lengths) == tot
), f"number of labels does not match ({len(code_lengths)} != {tot})"
offsets = list(itertools.accumulate([0] + code_lengths))
offsets = [(offsets[i], offsets[i + 1]) for i in inds]
return offsets
def verify_label_lengths(
audio_sizes,
audio_rate,
label_path,
label_rate,
inds,
tot,
tol=0.1, # tolerance in seconds
):
if label_rate < 0:
logger.info(f"{label_path} is sequence label. skipped")
return
with open(label_path) as f:
lengths = [len(line.rstrip().split()) for line in f]
assert len(lengths) == tot
lengths = [lengths[i] for i in inds]
num_invalid = 0
for i, ind in enumerate(inds):
dur_from_audio = audio_sizes[i] / audio_rate
dur_from_label = lengths[i] / label_rate
if abs(dur_from_audio - dur_from_label) > tol:
logger.warning(
(
f"audio and label duration differ too much "
f"(|{dur_from_audio} - {dur_from_label}| > {tol}) "
f"in line {ind+1} of {label_path}. Check if `label_rate` "
f"is correctly set (currently {label_rate}). "
f"num. of samples = {audio_sizes[i]}; "
f"label length = {lengths[i]}"
)
)
num_invalid += 1
if num_invalid > 0:
logger.warning(
f"total {num_invalid} (audio, label) pairs with mismatched lengths"
)
class AVHubertDataset(FairseqDataset):
def __init__(
self,
manifest_path: str,
sample_rate: float,
label_paths: List[str],
label_rates: Union[List[float], float], # -1 for sequence labels
pad_list: List[str],
eos_list: List[str],
label_processors: Optional[List[Any]] = None,
max_keep_sample_size: Optional[int] = None,
min_keep_sample_size: Optional[int] = None,
max_sample_size: Optional[int] = None,
shuffle: bool = True,
pad_audio: bool = False,
normalize: bool = False,
store_labels: bool = True,
random_crop: bool = False,
single_target: bool = False,
stack_order_audio: int=1,
skip_verify: bool=False,
image_mean: float=0,
image_std: float=1,
image_crop_size: int=88,
image_aug: bool=False,
modalities: Optional[List[str]]=None,
is_s2s=False,
noise_fn=None,
noise_prob=0,
noise_snr=0,
noise_num=1
):
self.label_rates = (
[label_rates for _ in range(len(label_paths))]
if isinstance(label_rates, int)
else label_rates
)
self.modalities = set(modalities)
self.audio_root, self.names, inds, tot, self.sizes = load_audio_visual(manifest_path, max_keep_sample_size, min_keep_sample_size, frame_rate=sample_rate, label_paths=label_paths, label_rates=self.label_rates)
self.sample_rate = sample_rate
self.stack_order_audio = stack_order_audio
self.shuffle = shuffle
self.random_crop = random_crop
self.num_labels = len(label_paths)
self.pad_list = pad_list
self.eos_list = eos_list
self.label_processors = label_processors
self.single_target = single_target
self.store_labels = store_labels
self.is_s2s = is_s2s
self.noise_wav, self.noise_prob, self.noise_snr, self.noise_num = [ln.strip() for ln in open(noise_fn).readlines()] if noise_fn is not None else [], noise_prob, noise_snr, noise_num
assert self.single_target == (self.label_rates[0] == -1), f"single target should be equivalent to sequence label (label_rate==-1)"
if store_labels:
self.label_list = [load_label(p, inds, tot) for p in label_paths]
else:
self.label_paths = label_paths
self.label_offsets_list = [
load_label_offset(p, inds, tot) for p in label_paths
]
assert (
label_processors is None
or len(label_processors) == self.num_labels
)
if not skip_verify:
for label_path, label_rate in zip(label_paths, self.label_rates):
verify_label_lengths(self.sizes, self.sample_rate, label_path, label_rate, inds, tot)
else:
logger.info(f"Skip label alignment verifying")
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.pad_audio = pad_audio
self.normalize = normalize
if image_aug:
self.transform = custom_utils.Compose([
custom_utils.Normalize( 0.0,255.0 ),
custom_utils.RandomCrop((image_crop_size, image_crop_size)),
custom_utils.HorizontalFlip(0.5),
custom_utils.Normalize(image_mean, image_std) ])
else:
self.transform = custom_utils.Compose([
custom_utils.Normalize( 0.0,255.0 ),
custom_utils.CenterCrop((image_crop_size, image_crop_size)),
custom_utils.Normalize(image_mean, image_std) ])
logger.info(f"image transform: {self.transform}")
logger.info(
f"pad_audio={pad_audio}, random_crop={random_crop}, "
f"normalize={normalize}, max_sample_size={self.max_sample_size}, "
f"seqs2seq data={self.is_s2s},")
logger.info(
f"Noise wav: {noise_fn}->{len(self.noise_wav)} wav, Prob: {self.noise_prob}, SNR: {self.noise_snr}, Number of mixture: {self.noise_num}"
)
def get_label(self, index, label_idx):
if self.store_labels:
label = self.label_list[label_idx][index]
else:
with open(self.label_paths[label_idx]) as f:
offset_s, offset_e = self.label_offsets_list[label_idx][index]
f.seek(offset_s)
label = f.read(offset_e - offset_s)
if self.label_processors is not None:
label = self.label_processors[label_idx](label)
return label
def get_labels(self, index):
return [self.get_label(index, i) for i in range(self.num_labels)]
def load_feature(self, mix_name):
"""
Load image and audio feature
Returns:
video_feats: numpy.ndarray of shape [T, H, W, 1], audio_feats: numpy.ndarray of shape [T, F]
"""
def stacker(feats, stack_order):
"""
Concatenating consecutive audio frames
Args:
feats - numpy.ndarray of shape [T, F]
stack_order - int (number of neighboring frames to concatenate
Returns:
feats - numpy.ndarray of shape [T', F']
"""
feat_dim = feats.shape[1]
if len(feats) % stack_order != 0:
res = stack_order - len(feats) % stack_order
res = np.zeros([res, feat_dim]).astype(feats.dtype)
feats = np.concatenate([feats, res], axis=0)
feats = feats.reshape((-1, stack_order, feat_dim)).reshape(-1, stack_order*feat_dim)
return feats
video_fn, audio_fn = mix_name
if 'video' in self.modalities:
video_feats = self.load_video(video_fn) # [T, H, W, 1]
else:
video_feats = None
if 'audio' in self.modalities:
audio_fn = audio_fn.split(':')[0]
sample_rate, wav_data = wavfile.read(audio_fn)
assert sample_rate == 16_000 and len(wav_data.shape) == 1
if np.random.rand() < self.noise_prob:
wav_data = self.add_noise(wav_data)
audio_feats = logfbank(wav_data, samplerate=sample_rate).astype(np.float32) # [T, F]
audio_feats = stacker(audio_feats, self.stack_order_audio) # [T/stack_order_audio, F*stack_order_audio]
else:
audio_feats = None
if audio_feats is not None and video_feats is not None:
diff = len(audio_feats) - len(video_feats)
if diff < 0:
audio_feats = np.concatenate([audio_feats, np.zeros([-diff, audio_feats.shape[-1]], dtype=audio_feats.dtype)])
elif diff > 0:
audio_feats = audio_feats[:-diff]
return video_feats, audio_feats
def load_video(self, audio_name):
feats = custom_utils.load_video(os.path.join(self.audio_root, audio_name))
feats = self.transform(feats)
feats = np.expand_dims(feats, axis=-1)
return feats
def select_noise(self):
rand_indexes = np.random.randint(0, len(self.noise_wav), size=self.noise_num)
noise_wav = []
for x in rand_indexes:
noise_wav.append(wavfile.read(self.noise_wav[x])[1].astype(np.float32))
if self.noise_num == 1:
return noise_wav[0]
else:
min_len = min([len(x) for x in noise_wav])
noise_wav = [x[:min_len] for x in noise_wav]
noise_wav = np.floor(np.stack(noise_wav).mean(axis=0))
return noise_wav
def add_noise(self, clean_wav):
clean_wav = clean_wav.astype(np.float32)
noise_wav = self.select_noise()
if type(self.noise_snr) == int or type(self.noise_snr) == float:
snr = self.noise_snr
elif type(self.noise_snr) == tuple:
snr = np.random.randint(self.noise_snr[0], self.noise_snr[1]+1)
clean_rms = np.sqrt(np.mean(np.square(clean_wav), axis=-1))
if len(clean_wav) > len(noise_wav):
ratio = int(np.ceil(len(clean_wav)/len(noise_wav)))
noise_wav = np.concatenate([noise_wav for _ in range(ratio)])
if len(clean_wav) < len(noise_wav):
start = 0
noise_wav = noise_wav[start: start + len(clean_wav)]
noise_rms = np.sqrt(np.mean(np.square(noise_wav), axis=-1))
adjusted_noise_rms = clean_rms / (10**(snr/20))
adjusted_noise_wav = noise_wav * (adjusted_noise_rms / noise_rms)
mixed = clean_wav + adjusted_noise_wav
#Avoid clipping noise
max_int16 = np.iinfo(np.int16).max
min_int16 = np.iinfo(np.int16).min
if mixed.max(axis=0) > max_int16 or mixed.min(axis=0) < min_int16:
if mixed.max(axis=0) >= abs(mixed.min(axis=0)):
reduction_rate = max_int16 / mixed.max(axis=0)
else :
reduction_rate = min_int16 / mixed.min(axis=0)
mixed = mixed * (reduction_rate)
mixed = mixed.astype(np.int16)
return mixed
def __getitem__(self, index):
video_feats, audio_feats = self.load_feature(self.names[index])
audio_feats, video_feats = torch.from_numpy(audio_feats.astype(np.float32)) if audio_feats is not None else None, torch.from_numpy(video_feats.astype(np.float32)) if video_feats is not None else None
if self.normalize and 'audio' in self.modalities:
with torch.no_grad():
audio_feats = F.layer_norm(audio_feats, audio_feats.shape[1:])
labels = self.get_labels(index)
fid = self.names[index][1].split(':')[1]
return {"id": index, 'fid': fid, "video_source": video_feats, 'audio_source': audio_feats, "label_list": labels}
def __len__(self):
return len(self.sizes)
def crop_to_max_size(self, wav, target_size, start=None):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav, 0
# longer utterances
if start is None:
start, end = 0, target_size
if self.random_crop:
start = np.random.randint(0, diff + 1)
end = size - diff + start
else:
end = start + target_size
return wav[start:end], start
def collater(self, samples):
samples = [s for s in samples if s["id"] is not None]
if len(samples) == 0:
return {}
audio_source, video_source = [s["audio_source"] for s in samples], [s["video_source"] for s in samples]
if audio_source[0] is None:
audio_source = None
if video_source[0] is None:
video_source = None
if audio_source is not None:
audio_sizes = [len(s) for s in audio_source]
else:
audio_sizes = [len(s) for s in video_source]
if self.pad_audio:
audio_size = min(max(audio_sizes), self.max_sample_size)
else:
audio_size = min(min(audio_sizes), self.max_sample_size)
if audio_source is not None:
collated_audios, padding_mask, audio_starts = self.collater_audio(audio_source, audio_size)
else:
collated_audios, audio_starts = None, None
if video_source is not None:
collated_videos, padding_mask, audio_starts = self.collater_audio(video_source, audio_size, audio_starts)
else:
collated_videos = None
targets_by_label = [
[s["label_list"][i] for s in samples]
for i in range(self.num_labels)
]
targets_list, lengths_list, ntokens_list = self.collater_label(
targets_by_label, audio_size, audio_starts
)
source = {"audio": collated_audios, "video": collated_videos}
net_input = {"source": source, "padding_mask": padding_mask}
batch = {
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": net_input,
"utt_id": [s['fid'] for s in samples]
}
if self.single_target:
batch["target_lengths"] = lengths_list[0]
batch["ntokens"] = ntokens_list[0]
if self.is_s2s:
batch['target'], net_input['prev_output_tokens'] = targets_list[0][0], targets_list[0][1]
else:
batch["target"] = targets_list[0]
else:
batch["target_lengths_list"] = lengths_list
batch["ntokens_list"] = ntokens_list
batch["target_list"] = targets_list
return batch
def collater_audio(self, audios, audio_size, audio_starts=None):
audio_feat_shape = list(audios[0].shape[1:])
collated_audios = audios[0].new_zeros([len(audios), audio_size]+audio_feat_shape)
padding_mask = (
torch.BoolTensor(len(audios), audio_size).fill_(False) #
)
start_known = audio_starts is not None
audio_starts = [0 for _ in audios] if not start_known else audio_starts
for i, audio in enumerate(audios):
diff = len(audio) - audio_size
if diff == 0:
collated_audios[i] = audio
elif diff < 0:
assert self.pad_audio
collated_audios[i] = torch.cat(
[audio, audio.new_full([-diff]+audio_feat_shape, 0.0)]
)
padding_mask[i, diff:] = True
else:
collated_audios[i], audio_starts[i] = self.crop_to_max_size(
audio, audio_size, audio_starts[i] if start_known else None
)
if len(audios[0].shape) == 2:
collated_audios = collated_audios.transpose(1, 2) # [B, T, F] -> [B, F, T]
else:
collated_audios = collated_audios.permute((0, 4, 1, 2, 3)).contiguous() # [B, T, H, W, C] -> [B, C, T, H, W]
return collated_audios, padding_mask, audio_starts
def collater_frm_label(
self, targets, audio_size, audio_starts, label_rate, pad
):
assert label_rate > 0
s2f = label_rate / self.sample_rate # num label per sample
frm_starts = [int(round(s * s2f)) for s in audio_starts]
frm_size = int(round(audio_size * s2f))
if not self.pad_audio:
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
frm_size = min(frm_size, *rem_size)
targets = [t[s: s + frm_size] for t, s in zip(targets, frm_starts)]
logger.debug(f"audio_starts={audio_starts}")
logger.debug(f"frame_starts={frm_starts}")
logger.debug(f"frame_size={frm_size}")
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(
targets, pad_idx=pad, left_pad=False
)
return targets, lengths, ntokens
def collater_seq_label(self, targets, pad):
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(
targets, pad_idx=pad, left_pad=False
)
return targets, lengths, ntokens
def collater_seq_label_s2s(self, targets, pad):
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
pad, eos = self.label_processors[0].dictionary.pad(), self.label_processors[0].dictionary.eos()
targets_ = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False)
prev_output_tokens = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False, move_eos_to_beginning=True)
return (targets_, prev_output_tokens), lengths, ntokens
def collater_label(self, targets_by_label, audio_size, audio_starts):
targets_list, lengths_list, ntokens_list = [], [], []
itr = zip(targets_by_label, self.label_rates, self.pad_list)
for targets, label_rate, pad in itr:
if label_rate == -1:
if self.is_s2s:
targets, lengths, ntokens = self.collater_seq_label_s2s(targets, pad)
else:
targets, lengths, ntokens = self.collater_seq_label(targets, pad)
else:
targets, lengths, ntokens = self.collater_frm_label(
targets, audio_size, audio_starts, label_rate, pad
)
targets_list.append(targets)
lengths_list.append(lengths)
ntokens_list.append(ntokens)
return targets_list, lengths_list, ntokens_list
def num_tokens(self, index):
return self.size(index)
def size(self, index):
if self.pad_audio:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)[::-1]