abrar-lohia commited on
Commit
77296bd
·
1 Parent(s): 9a2da78

Delete generate_human_motion

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. generate_human_motion/VQTrans/GPT_eval_multi.py +0 -121
  2. generate_human_motion/VQTrans/VQ_eval.py +0 -95
  3. generate_human_motion/VQTrans/ViT-B-32.pt +0 -3
  4. generate_human_motion/VQTrans/__init__.py +0 -0
  5. generate_human_motion/VQTrans/__pycache__/__init__.cpython-310.pyc +0 -0
  6. generate_human_motion/VQTrans/body_models/smpl/J_regressor_extra.npy +0 -3
  7. generate_human_motion/VQTrans/body_models/smpl/SMPL_NEUTRAL.pkl +0 -3
  8. generate_human_motion/VQTrans/body_models/smpl/kintree_table.pkl +0 -3
  9. generate_human_motion/VQTrans/body_models/smpl/smplfaces.npy +0 -3
  10. generate_human_motion/VQTrans/checkpoints/kit.zip +0 -3
  11. generate_human_motion/VQTrans/checkpoints/t2m.zip +0 -3
  12. generate_human_motion/VQTrans/checkpoints/train_vq.py +0 -171
  13. generate_human_motion/VQTrans/dataset/dataset_TM_eval.py +0 -217
  14. generate_human_motion/VQTrans/dataset/dataset_TM_train.py +0 -161
  15. generate_human_motion/VQTrans/dataset/dataset_VQ.py +0 -109
  16. generate_human_motion/VQTrans/dataset/dataset_tokenize.py +0 -117
  17. generate_human_motion/VQTrans/dataset/prepare/download_extractor.sh +0 -15
  18. generate_human_motion/VQTrans/dataset/prepare/download_glove.sh +0 -9
  19. generate_human_motion/VQTrans/dataset/prepare/download_model.sh +0 -12
  20. generate_human_motion/VQTrans/dataset/prepare/download_smpl.sh +0 -13
  21. generate_human_motion/VQTrans/environment.yml +0 -121
  22. generate_human_motion/VQTrans/models/__init__.py +0 -0
  23. generate_human_motion/VQTrans/models/__pycache__/__init__.cpython-310.pyc +0 -0
  24. generate_human_motion/VQTrans/models/__pycache__/encdec.cpython-310.pyc +0 -0
  25. generate_human_motion/VQTrans/models/__pycache__/pos_encoding.cpython-310.pyc +0 -0
  26. generate_human_motion/VQTrans/models/__pycache__/quantize_cnn.cpython-310.pyc +0 -0
  27. generate_human_motion/VQTrans/models/__pycache__/resnet.cpython-310.pyc +0 -0
  28. generate_human_motion/VQTrans/models/__pycache__/rotation2xyz.cpython-310.pyc +0 -0
  29. generate_human_motion/VQTrans/models/__pycache__/smpl.cpython-310.pyc +0 -0
  30. generate_human_motion/VQTrans/models/__pycache__/t2m_trans.cpython-310.pyc +0 -0
  31. generate_human_motion/VQTrans/models/__pycache__/vqvae.cpython-310.pyc +0 -0
  32. generate_human_motion/VQTrans/models/encdec.py +0 -67
  33. generate_human_motion/VQTrans/models/evaluator_wrapper.py +0 -92
  34. generate_human_motion/VQTrans/models/modules.py +0 -109
  35. generate_human_motion/VQTrans/models/pos_encoding.py +0 -43
  36. generate_human_motion/VQTrans/models/quantize_cnn.py +0 -415
  37. generate_human_motion/VQTrans/models/resnet.py +0 -82
  38. generate_human_motion/VQTrans/models/rotation2xyz.py +0 -92
  39. generate_human_motion/VQTrans/models/smpl.py +0 -97
  40. generate_human_motion/VQTrans/models/t2m_trans.py +0 -211
  41. generate_human_motion/VQTrans/models/vqvae.py +0 -118
  42. generate_human_motion/VQTrans/options/__pycache__/option_transformer.cpython-310.pyc +0 -0
  43. generate_human_motion/VQTrans/options/get_eval_option.py +0 -83
  44. generate_human_motion/VQTrans/options/option_transformer.py +0 -68
  45. generate_human_motion/VQTrans/options/option_vq.py +0 -61
  46. generate_human_motion/VQTrans/output/02ab4ad275eda92f352e2ed8d942eeef_pred.pt +0 -3
  47. generate_human_motion/VQTrans/output/06c27c738e874b23067c006f52e18ebc_pred.pt +0 -3
  48. generate_human_motion/VQTrans/output/0edd5f692aeec051d748dee0844f94e1_pred.pt +0 -3
  49. generate_human_motion/VQTrans/output/23cb7d0e26bb1646b3d386331971449c_pred.pt +0 -3
  50. generate_human_motion/VQTrans/output/3076bd805b9e1991722b4f9e3b821856_pred.pt +0 -3
generate_human_motion/VQTrans/GPT_eval_multi.py DELETED
@@ -1,121 +0,0 @@
1
- import os
2
- import torch
3
- import numpy as np
4
- from torch.utils.tensorboard import SummaryWriter
5
- import json
6
- import clip
7
-
8
- import options.option_transformer as option_trans
9
- import models.vqvae as vqvae
10
- import utils.utils_model as utils_model
11
- import utils.eval_trans as eval_trans
12
- from dataset import dataset_TM_eval
13
- import models.t2m_trans as trans
14
- from options.get_eval_option import get_opt
15
- from models.evaluator_wrapper import EvaluatorModelWrapper
16
- import warnings
17
- warnings.filterwarnings('ignore')
18
-
19
- ##### ---- Exp dirs ---- #####
20
- args = option_trans.get_args_parser()
21
- torch.manual_seed(args.seed)
22
-
23
- args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
24
- os.makedirs(args.out_dir, exist_ok = True)
25
-
26
- ##### ---- Logger ---- #####
27
- logger = utils_model.get_logger(args.out_dir)
28
- writer = SummaryWriter(args.out_dir)
29
- logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
30
-
31
- from utils.word_vectorizer import WordVectorizer
32
- w_vectorizer = WordVectorizer('./glove', 'our_vab')
33
- val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
34
-
35
- dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
36
-
37
- wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
38
- eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
39
-
40
- ##### ---- Network ---- #####
41
-
42
- ## load clip model and datasets
43
- clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training
44
- clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
45
- clip_model.eval()
46
- for p in clip_model.parameters():
47
- p.requires_grad = False
48
-
49
- net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
50
- args.nb_code,
51
- args.code_dim,
52
- args.output_emb_width,
53
- args.down_t,
54
- args.stride_t,
55
- args.width,
56
- args.depth,
57
- args.dilation_growth_rate)
58
-
59
-
60
- trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
61
- embed_dim=args.embed_dim_gpt,
62
- clip_dim=args.clip_dim,
63
- block_size=args.block_size,
64
- num_layers=args.num_layers,
65
- n_head=args.n_head_gpt,
66
- drop_out_rate=args.drop_out_rate,
67
- fc_rate=args.ff_rate)
68
-
69
-
70
- print ('loading checkpoint from {}'.format(args.resume_pth))
71
- ckpt = torch.load(args.resume_pth, map_location='cpu')
72
- net.load_state_dict(ckpt['net'], strict=True)
73
- net.eval()
74
- net.cuda()
75
-
76
- if args.resume_trans is not None:
77
- print ('loading transformer checkpoint from {}'.format(args.resume_trans))
78
- ckpt = torch.load(args.resume_trans, map_location='cpu')
79
- trans_encoder.load_state_dict(ckpt['trans'], strict=True)
80
- trans_encoder.train()
81
- trans_encoder.cuda()
82
-
83
-
84
- fid = []
85
- div = []
86
- top1 = []
87
- top2 = []
88
- top3 = []
89
- matching = []
90
- multi = []
91
- repeat_time = 20
92
-
93
-
94
- for i in range(repeat_time):
95
- best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, best_multi=0, clip_model=clip_model, eval_wrapper=eval_wrapper, draw=False, savegif=False, save=False, savenpy=(i==0))
96
- fid.append(best_fid)
97
- div.append(best_div)
98
- top1.append(best_top1)
99
- top2.append(best_top2)
100
- top3.append(best_top3)
101
- matching.append(best_matching)
102
- multi.append(best_multi)
103
-
104
- print('final result:')
105
- print('fid: ', sum(fid)/repeat_time)
106
- print('div: ', sum(div)/repeat_time)
107
- print('top1: ', sum(top1)/repeat_time)
108
- print('top2: ', sum(top2)/repeat_time)
109
- print('top3: ', sum(top3)/repeat_time)
110
- print('matching: ', sum(matching)/repeat_time)
111
- print('multi: ', sum(multi)/repeat_time)
112
-
113
- fid = np.array(fid)
114
- div = np.array(div)
115
- top1 = np.array(top1)
116
- top2 = np.array(top2)
117
- top3 = np.array(top3)
118
- matching = np.array(matching)
119
- multi = np.array(multi)
120
- msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}, Multi. {np.mean(multi):.3f}, conf. {np.std(multi)*1.96/np.sqrt(repeat_time):.3f}"
121
- logger.info(msg_final)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/VQ_eval.py DELETED
@@ -1,95 +0,0 @@
1
- import os
2
- import json
3
-
4
- import torch
5
- from torch.utils.tensorboard import SummaryWriter
6
- import numpy as np
7
- import models.vqvae as vqvae
8
- import options.option_vq as option_vq
9
- import utils.utils_model as utils_model
10
- from dataset import dataset_TM_eval
11
- import utils.eval_trans as eval_trans
12
- from options.get_eval_option import get_opt
13
- from models.evaluator_wrapper import EvaluatorModelWrapper
14
- import warnings
15
- warnings.filterwarnings('ignore')
16
- import numpy as np
17
- ##### ---- Exp dirs ---- #####
18
- args = option_vq.get_args_parser()
19
- torch.manual_seed(args.seed)
20
-
21
- args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
22
- os.makedirs(args.out_dir, exist_ok = True)
23
-
24
- ##### ---- Logger ---- #####
25
- logger = utils_model.get_logger(args.out_dir)
26
- writer = SummaryWriter(args.out_dir)
27
- logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
28
-
29
-
30
- from utils.word_vectorizer import WordVectorizer
31
- w_vectorizer = WordVectorizer('./glove', 'our_vab')
32
-
33
-
34
- dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
35
-
36
- wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
37
- eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
38
-
39
-
40
- ##### ---- Dataloader ---- #####
41
- args.nb_joints = 21 if args.dataname == 'kit' else 22
42
-
43
- val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer, unit_length=2**args.down_t)
44
-
45
- ##### ---- Network ---- #####
46
- net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
47
- args.nb_code,
48
- args.code_dim,
49
- args.output_emb_width,
50
- args.down_t,
51
- args.stride_t,
52
- args.width,
53
- args.depth,
54
- args.dilation_growth_rate,
55
- args.vq_act,
56
- args.vq_norm)
57
-
58
- if args.resume_pth :
59
- logger.info('loading checkpoint from {}'.format(args.resume_pth))
60
- ckpt = torch.load(args.resume_pth, map_location='cpu')
61
- net.load_state_dict(ckpt['net'], strict=True)
62
- net.train()
63
- net.cuda()
64
-
65
- fid = []
66
- div = []
67
- top1 = []
68
- top2 = []
69
- top3 = []
70
- matching = []
71
- repeat_time = 20
72
- for i in range(repeat_time):
73
- best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper, draw=False, save=False, savenpy=(i==0))
74
- fid.append(best_fid)
75
- div.append(best_div)
76
- top1.append(best_top1)
77
- top2.append(best_top2)
78
- top3.append(best_top3)
79
- matching.append(best_matching)
80
- print('final result:')
81
- print('fid: ', sum(fid)/repeat_time)
82
- print('div: ', sum(div)/repeat_time)
83
- print('top1: ', sum(top1)/repeat_time)
84
- print('top2: ', sum(top2)/repeat_time)
85
- print('top3: ', sum(top3)/repeat_time)
86
- print('matching: ', sum(matching)/repeat_time)
87
-
88
- fid = np.array(fid)
89
- div = np.array(div)
90
- top1 = np.array(top1)
91
- top2 = np.array(top2)
92
- top3 = np.array(top3)
93
- matching = np.array(matching)
94
- msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}"
95
- logger.info(msg_final)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/ViT-B-32.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af
3
- size 353976522
 
 
 
 
generate_human_motion/VQTrans/__init__.py DELETED
File without changes
generate_human_motion/VQTrans/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (162 Bytes)
 
generate_human_motion/VQTrans/body_models/smpl/J_regressor_extra.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc968ea4f9855571e82f90203280836b01f13ee42a8e1b89d8d580b801242a89
3
- size 496160
 
 
 
 
generate_human_motion/VQTrans/body_models/smpl/SMPL_NEUTRAL.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:98e65c74ad9b998783132f00880d1025a8d64b158e040e6ef13a557e5098bc42
3
- size 39001280
 
 
 
 
generate_human_motion/VQTrans/body_models/smpl/kintree_table.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:62116ec76c6192ae912557122ea935267ba7188144efb9306ea1366f0e50d4d2
3
- size 349
 
 
 
 
generate_human_motion/VQTrans/body_models/smpl/smplfaces.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ee8e99db736acf178a6078ab5710ca942edc3738d34c72f41a35c40b370e045
3
- size 165440
 
 
 
 
generate_human_motion/VQTrans/checkpoints/kit.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0e9d54e1c68bacad61277f89c7d05f9c88a68fd92ff79f79644128bb9b2508cb
3
- size 704518254
 
 
 
 
generate_human_motion/VQTrans/checkpoints/t2m.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:09e0628dbc585416217617c0583415c8f654ff855703d72fdb713f7061c0863e
3
- size 1222422692
 
 
 
 
generate_human_motion/VQTrans/checkpoints/train_vq.py DELETED
@@ -1,171 +0,0 @@
1
- import os
2
- import json
3
-
4
- import torch
5
- import torch.optim as optim
6
- from torch.utils.tensorboard import SummaryWriter
7
-
8
- import models.vqvae as vqvae
9
- import utils.losses as losses
10
- import options.option_vq as option_vq
11
- import utils.utils_model as utils_model
12
- from dataset import dataset_VQ, dataset_TM_eval
13
- import utils.eval_trans as eval_trans
14
- from options.get_eval_option import get_opt
15
- from models.evaluator_wrapper import EvaluatorModelWrapper
16
- import warnings
17
- warnings.filterwarnings('ignore')
18
- from utils.word_vectorizer import WordVectorizer
19
-
20
- def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
21
-
22
- current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
23
- for param_group in optimizer.param_groups:
24
- param_group["lr"] = current_lr
25
-
26
- return optimizer, current_lr
27
-
28
- ##### ---- Exp dirs ---- #####
29
- args = option_vq.get_args_parser()
30
- torch.manual_seed(args.seed)
31
-
32
- args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
33
- os.makedirs(args.out_dir, exist_ok = True)
34
-
35
- ##### ---- Logger ---- #####
36
- logger = utils_model.get_logger(args.out_dir)
37
- writer = SummaryWriter(args.out_dir)
38
- logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
39
-
40
-
41
-
42
- w_vectorizer = WordVectorizer('./glove', 'our_vab')
43
-
44
- if args.dataname == 'kit' :
45
- dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
46
- args.nb_joints = 21
47
-
48
- else :
49
- dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
50
- args.nb_joints = 22
51
-
52
- logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
53
-
54
- wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
55
- eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
56
-
57
-
58
- ##### ---- Dataloader ---- #####
59
- train_loader = dataset_VQ.DATALoader(args.dataname,
60
- args.batch_size,
61
- window_size=args.window_size,
62
- unit_length=2**args.down_t)
63
-
64
- train_loader_iter = dataset_VQ.cycle(train_loader)
65
-
66
- val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
67
- 32,
68
- w_vectorizer,
69
- unit_length=2**args.down_t)
70
-
71
- ##### ---- Network ---- #####
72
- net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
73
- args.nb_code,
74
- args.code_dim,
75
- args.output_emb_width,
76
- args.down_t,
77
- args.stride_t,
78
- args.width,
79
- args.depth,
80
- args.dilation_growth_rate,
81
- args.vq_act,
82
- args.vq_norm)
83
-
84
-
85
- if args.resume_pth :
86
- logger.info('loading checkpoint from {}'.format(args.resume_pth))
87
- ckpt = torch.load(args.resume_pth, map_location='cpu')
88
- net.load_state_dict(ckpt['net'], strict=True)
89
- net.train()
90
- net.cuda()
91
-
92
- ##### ---- Optimizer & Scheduler ---- #####
93
- optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
94
- scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
95
-
96
-
97
- Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
98
-
99
- ##### ------ warm-up ------- #####
100
- avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
101
-
102
- for nb_iter in range(1, args.warm_up_iter):
103
-
104
- optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
105
-
106
- gt_motion = next(train_loader_iter)
107
- gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
108
-
109
- pred_motion, loss_commit, perplexity = net(gt_motion)
110
- loss_motion = Loss(pred_motion, gt_motion)
111
- loss_vel = Loss.forward_vel(pred_motion, gt_motion)
112
-
113
- loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
114
-
115
- optimizer.zero_grad()
116
- loss.backward()
117
- optimizer.step()
118
-
119
- avg_recons += loss_motion.item()
120
- avg_perplexity += perplexity.item()
121
- avg_commit += loss_commit.item()
122
-
123
- if nb_iter % args.print_iter == 0 :
124
- avg_recons /= args.print_iter
125
- avg_perplexity /= args.print_iter
126
- avg_commit /= args.print_iter
127
-
128
- logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
129
-
130
- avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
131
-
132
- ##### ---- Training ---- #####
133
- avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
134
- best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
135
-
136
- for nb_iter in range(1, args.total_iter + 1):
137
-
138
- gt_motion = next(train_loader_iter)
139
- gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
140
-
141
- pred_motion, loss_commit, perplexity = net(gt_motion)
142
- loss_motion = Loss(pred_motion, gt_motion)
143
- loss_vel = Loss.forward_vel(pred_motion, gt_motion)
144
-
145
- loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
146
-
147
- optimizer.zero_grad()
148
- loss.backward()
149
- optimizer.step()
150
- scheduler.step()
151
-
152
- avg_recons += loss_motion.item()
153
- avg_perplexity += perplexity.item()
154
- avg_commit += loss_commit.item()
155
-
156
- if nb_iter % args.print_iter == 0 :
157
- avg_recons /= args.print_iter
158
- avg_perplexity /= args.print_iter
159
- avg_commit /= args.print_iter
160
-
161
- writer.add_scalar('./Train/L1', avg_recons, nb_iter)
162
- writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
163
- writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
164
-
165
- logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
166
-
167
- avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
168
-
169
- if nb_iter % args.eval_iter==0 :
170
- best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
171
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/dataset_TM_eval.py DELETED
@@ -1,217 +0,0 @@
1
- import torch
2
- from torch.utils import data
3
- import numpy as np
4
- from os.path import join as pjoin
5
- import random
6
- import codecs as cs
7
- from tqdm import tqdm
8
-
9
- import utils.paramUtil as paramUtil
10
- from torch.utils.data._utils.collate import default_collate
11
-
12
-
13
- def collate_fn(batch):
14
- batch.sort(key=lambda x: x[3], reverse=True)
15
- return default_collate(batch)
16
-
17
-
18
- '''For use of training text-2-motion generative model'''
19
- class Text2MotionDataset(data.Dataset):
20
- def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4):
21
-
22
- self.max_length = 20
23
- self.pointer = 0
24
- self.dataset_name = dataset_name
25
- self.is_test = is_test
26
- self.max_text_len = max_text_len
27
- self.unit_length = unit_length
28
- self.w_vectorizer = w_vectorizer
29
- if dataset_name == 't2m':
30
- self.data_root = './dataset/HumanML3D'
31
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
32
- self.text_dir = pjoin(self.data_root, 'texts')
33
- self.joints_num = 22
34
- radius = 4
35
- fps = 20
36
- self.max_motion_length = 196
37
- dim_pose = 263
38
- kinematic_chain = paramUtil.t2m_kinematic_chain
39
- self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
40
- elif dataset_name == 'kit':
41
- self.data_root = './dataset/KIT-ML'
42
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
43
- self.text_dir = pjoin(self.data_root, 'texts')
44
- self.joints_num = 21
45
- radius = 240 * 8
46
- fps = 12.5
47
- dim_pose = 251
48
- self.max_motion_length = 196
49
- kinematic_chain = paramUtil.kit_kinematic_chain
50
- self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
51
-
52
- mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
53
- std = np.load(pjoin(self.meta_dir, 'std.npy'))
54
-
55
- if is_test:
56
- split_file = pjoin(self.data_root, 'test.txt')
57
- else:
58
- split_file = pjoin(self.data_root, 'val.txt')
59
-
60
- min_motion_len = 40 if self.dataset_name =='t2m' else 24
61
- # min_motion_len = 64
62
-
63
- joints_num = self.joints_num
64
-
65
- data_dict = {}
66
- id_list = []
67
- with cs.open(split_file, 'r') as f:
68
- for line in f.readlines():
69
- id_list.append(line.strip())
70
-
71
- new_name_list = []
72
- length_list = []
73
- for name in tqdm(id_list):
74
- try:
75
- motion = np.load(pjoin(self.motion_dir, name + '.npy'))
76
- if (len(motion)) < min_motion_len or (len(motion) >= 200):
77
- continue
78
- text_data = []
79
- flag = False
80
- with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
81
- for line in f.readlines():
82
- text_dict = {}
83
- line_split = line.strip().split('#')
84
- caption = line_split[0]
85
- tokens = line_split[1].split(' ')
86
- f_tag = float(line_split[2])
87
- to_tag = float(line_split[3])
88
- f_tag = 0.0 if np.isnan(f_tag) else f_tag
89
- to_tag = 0.0 if np.isnan(to_tag) else to_tag
90
-
91
- text_dict['caption'] = caption
92
- text_dict['tokens'] = tokens
93
- if f_tag == 0.0 and to_tag == 0.0:
94
- flag = True
95
- text_data.append(text_dict)
96
- else:
97
- try:
98
- n_motion = motion[int(f_tag*fps) : int(to_tag*fps)]
99
- if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
100
- continue
101
- new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
102
- while new_name in data_dict:
103
- new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
104
- data_dict[new_name] = {'motion': n_motion,
105
- 'length': len(n_motion),
106
- 'text':[text_dict]}
107
- new_name_list.append(new_name)
108
- length_list.append(len(n_motion))
109
- except:
110
- print(line_split)
111
- print(line_split[2], line_split[3], f_tag, to_tag, name)
112
- # break
113
-
114
- if flag:
115
- data_dict[name] = {'motion': motion,
116
- 'length': len(motion),
117
- 'text': text_data}
118
- new_name_list.append(name)
119
- length_list.append(len(motion))
120
- except Exception as e:
121
- # print(e)
122
- pass
123
-
124
- name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
125
- self.mean = mean
126
- self.std = std
127
- self.length_arr = np.array(length_list)
128
- self.data_dict = data_dict
129
- self.name_list = name_list
130
- self.reset_max_len(self.max_length)
131
-
132
- def reset_max_len(self, length):
133
- assert length <= self.max_motion_length
134
- self.pointer = np.searchsorted(self.length_arr, length)
135
- print("Pointer Pointing at %d"%self.pointer)
136
- self.max_length = length
137
-
138
- def inv_transform(self, data):
139
- return data * self.std + self.mean
140
-
141
- def forward_transform(self, data):
142
- return (data - self.mean) / self.std
143
-
144
- def __len__(self):
145
- return len(self.data_dict) - self.pointer
146
-
147
- def __getitem__(self, item):
148
- idx = self.pointer + item
149
- name = self.name_list[idx]
150
- data = self.data_dict[name]
151
- # data = self.data_dict[self.name_list[idx]]
152
- motion, m_length, text_list = data['motion'], data['length'], data['text']
153
- # Randomly select a caption
154
- text_data = random.choice(text_list)
155
- caption, tokens = text_data['caption'], text_data['tokens']
156
-
157
- if len(tokens) < self.max_text_len:
158
- # pad with "unk"
159
- tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
160
- sent_len = len(tokens)
161
- tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len)
162
- else:
163
- # crop
164
- tokens = tokens[:self.max_text_len]
165
- tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
166
- sent_len = len(tokens)
167
- pos_one_hots = []
168
- word_embeddings = []
169
- for token in tokens:
170
- word_emb, pos_oh = self.w_vectorizer[token]
171
- pos_one_hots.append(pos_oh[None, :])
172
- word_embeddings.append(word_emb[None, :])
173
- pos_one_hots = np.concatenate(pos_one_hots, axis=0)
174
- word_embeddings = np.concatenate(word_embeddings, axis=0)
175
-
176
- if self.unit_length < 10:
177
- coin2 = np.random.choice(['single', 'single', 'double'])
178
- else:
179
- coin2 = 'single'
180
-
181
- if coin2 == 'double':
182
- m_length = (m_length // self.unit_length - 1) * self.unit_length
183
- elif coin2 == 'single':
184
- m_length = (m_length // self.unit_length) * self.unit_length
185
- idx = random.randint(0, len(motion) - m_length)
186
- motion = motion[idx:idx+m_length]
187
-
188
- "Z Normalization"
189
- motion = (motion - self.mean) / self.std
190
-
191
- if m_length < self.max_motion_length:
192
- motion = np.concatenate([motion,
193
- np.zeros((self.max_motion_length - m_length, motion.shape[1]))
194
- ], axis=0)
195
-
196
- return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name
197
-
198
-
199
-
200
-
201
- def DATALoader(dataset_name, is_test,
202
- batch_size, w_vectorizer,
203
- num_workers = 8, unit_length = 4) :
204
-
205
- val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length),
206
- batch_size,
207
- shuffle = True,
208
- num_workers=num_workers,
209
- collate_fn=collate_fn,
210
- drop_last = True)
211
- return val_loader
212
-
213
-
214
- def cycle(iterable):
215
- while True:
216
- for x in iterable:
217
- yield x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/dataset_TM_train.py DELETED
@@ -1,161 +0,0 @@
1
- import torch
2
- from torch.utils import data
3
- import numpy as np
4
- from os.path import join as pjoin
5
- import random
6
- import codecs as cs
7
- from tqdm import tqdm
8
- import utils.paramUtil as paramUtil
9
- from torch.utils.data._utils.collate import default_collate
10
-
11
-
12
- def collate_fn(batch):
13
- batch.sort(key=lambda x: x[3], reverse=True)
14
- return default_collate(batch)
15
-
16
-
17
- '''For use of training text-2-motion generative model'''
18
- class Text2MotionDataset(data.Dataset):
19
- def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None):
20
-
21
- self.max_length = 64
22
- self.pointer = 0
23
- self.dataset_name = dataset_name
24
-
25
- self.unit_length = unit_length
26
- # self.mot_start_idx = codebook_size
27
- self.mot_end_idx = codebook_size
28
- self.mot_pad_idx = codebook_size + 1
29
- if dataset_name == 't2m':
30
- self.data_root = './dataset/HumanML3D'
31
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
32
- self.text_dir = pjoin(self.data_root, 'texts')
33
- self.joints_num = 22
34
- radius = 4
35
- fps = 20
36
- self.max_motion_length = 26 if unit_length == 8 else 51
37
- dim_pose = 263
38
- kinematic_chain = paramUtil.t2m_kinematic_chain
39
- elif dataset_name == 'kit':
40
- self.data_root = './dataset/KIT-ML'
41
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
42
- self.text_dir = pjoin(self.data_root, 'texts')
43
- self.joints_num = 21
44
- radius = 240 * 8
45
- fps = 12.5
46
- dim_pose = 251
47
- self.max_motion_length = 26 if unit_length == 8 else 51
48
- kinematic_chain = paramUtil.kit_kinematic_chain
49
-
50
- split_file = pjoin(self.data_root, 'train.txt')
51
-
52
-
53
- id_list = []
54
- with cs.open(split_file, 'r') as f:
55
- for line in f.readlines():
56
- id_list.append(line.strip())
57
-
58
- new_name_list = []
59
- data_dict = {}
60
- for name in tqdm(id_list):
61
- try:
62
- m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))
63
-
64
- # Read text
65
- with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
66
- text_data = []
67
- flag = False
68
- lines = f.readlines()
69
-
70
- for line in lines:
71
- try:
72
- text_dict = {}
73
- line_split = line.strip().split('#')
74
- caption = line_split[0]
75
- t_tokens = line_split[1].split(' ')
76
- f_tag = float(line_split[2])
77
- to_tag = float(line_split[3])
78
- f_tag = 0.0 if np.isnan(f_tag) else f_tag
79
- to_tag = 0.0 if np.isnan(to_tag) else to_tag
80
-
81
- text_dict['caption'] = caption
82
- text_dict['tokens'] = t_tokens
83
- if f_tag == 0.0 and to_tag == 0.0:
84
- flag = True
85
- text_data.append(text_dict)
86
- else:
87
- m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]
88
-
89
- if len(m_token_list_new) == 0:
90
- continue
91
- new_name = '%s_%f_%f'%(name, f_tag, to_tag)
92
-
93
- data_dict[new_name] = {'m_token_list': m_token_list_new,
94
- 'text':[text_dict]}
95
- new_name_list.append(new_name)
96
- except:
97
- pass
98
-
99
- if flag:
100
- data_dict[name] = {'m_token_list': m_token_list,
101
- 'text':text_data}
102
- new_name_list.append(name)
103
- except:
104
- pass
105
- self.data_dict = data_dict
106
- self.name_list = new_name_list
107
-
108
- def __len__(self):
109
- return len(self.data_dict)
110
-
111
- def __getitem__(self, item):
112
- data = self.data_dict[self.name_list[item]]
113
- m_token_list, text_list = data['m_token_list'], data['text']
114
- m_tokens = random.choice(m_token_list)
115
-
116
- text_data = random.choice(text_list)
117
- caption= text_data['caption']
118
-
119
-
120
- coin = np.random.choice([False, False, True])
121
- # print(len(m_tokens))
122
- if coin:
123
- # drop one token at the head or tail
124
- coin2 = np.random.choice([True, False])
125
- if coin2:
126
- m_tokens = m_tokens[:-1]
127
- else:
128
- m_tokens = m_tokens[1:]
129
- m_tokens_len = m_tokens.shape[0]
130
-
131
- if m_tokens_len+1 < self.max_motion_length:
132
- m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
133
- else:
134
- m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)
135
-
136
- return caption, m_tokens.reshape(-1), m_tokens_len
137
-
138
-
139
-
140
-
141
- def DATALoader(dataset_name,
142
- batch_size, codebook_size, tokenizer_name, unit_length=4,
143
- num_workers = 8) :
144
-
145
- train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
146
- batch_size,
147
- shuffle=True,
148
- num_workers=num_workers,
149
- #collate_fn=collate_fn,
150
- drop_last = True)
151
-
152
-
153
- return train_loader
154
-
155
-
156
- def cycle(iterable):
157
- while True:
158
- for x in iterable:
159
- yield x
160
-
161
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/dataset_VQ.py DELETED
@@ -1,109 +0,0 @@
1
- import torch
2
- from torch.utils import data
3
- import numpy as np
4
- from os.path import join as pjoin
5
- import random
6
- import codecs as cs
7
- from tqdm import tqdm
8
-
9
-
10
-
11
- class VQMotionDataset(data.Dataset):
12
- def __init__(self, dataset_name, window_size = 64, unit_length = 4):
13
- self.window_size = window_size
14
- self.unit_length = unit_length
15
- self.dataset_name = dataset_name
16
-
17
- if dataset_name == 't2m':
18
- self.data_root = './dataset/HumanML3D'
19
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
20
- self.text_dir = pjoin(self.data_root, 'texts')
21
- self.joints_num = 22
22
- self.max_motion_length = 196
23
- self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
24
-
25
- elif dataset_name == 'kit':
26
- self.data_root = './dataset/KIT-ML'
27
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
28
- self.text_dir = pjoin(self.data_root, 'texts')
29
- self.joints_num = 21
30
-
31
- self.max_motion_length = 196
32
- self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
33
-
34
- joints_num = self.joints_num
35
-
36
- mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
37
- std = np.load(pjoin(self.meta_dir, 'std.npy'))
38
-
39
- split_file = pjoin(self.data_root, 'train.txt')
40
-
41
- self.data = []
42
- self.lengths = []
43
- id_list = []
44
- with cs.open(split_file, 'r') as f:
45
- for line in f.readlines():
46
- id_list.append(line.strip())
47
-
48
- for name in tqdm(id_list):
49
- try:
50
- motion = np.load(pjoin(self.motion_dir, name + '.npy'))
51
- if motion.shape[0] < self.window_size:
52
- continue
53
- self.lengths.append(motion.shape[0] - self.window_size)
54
- self.data.append(motion)
55
- except:
56
- # Some motion may not exist in KIT dataset
57
- pass
58
-
59
-
60
- self.mean = mean
61
- self.std = std
62
- print("Total number of motions {}".format(len(self.data)))
63
-
64
- def inv_transform(self, data):
65
- return data * self.std + self.mean
66
-
67
- def compute_sampling_prob(self) :
68
-
69
- prob = np.array(self.lengths, dtype=np.float32)
70
- prob /= np.sum(prob)
71
- return prob
72
-
73
- def __len__(self):
74
- return len(self.data)
75
-
76
- def __getitem__(self, item):
77
- motion = self.data[item]
78
-
79
- idx = random.randint(0, len(motion) - self.window_size)
80
-
81
- motion = motion[idx:idx+self.window_size]
82
- "Z Normalization"
83
- motion = (motion - self.mean) / self.std
84
-
85
- return motion
86
-
87
- def DATALoader(dataset_name,
88
- batch_size,
89
- num_workers = 8,
90
- window_size = 64,
91
- unit_length = 4):
92
-
93
- trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
94
- prob = trainSet.compute_sampling_prob()
95
- sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
96
- train_loader = torch.utils.data.DataLoader(trainSet,
97
- batch_size,
98
- shuffle=True,
99
- #sampler=sampler,
100
- num_workers=num_workers,
101
- #collate_fn=collate_fn,
102
- drop_last = True)
103
-
104
- return train_loader
105
-
106
- def cycle(iterable):
107
- while True:
108
- for x in iterable:
109
- yield x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/dataset_tokenize.py DELETED
@@ -1,117 +0,0 @@
1
- import torch
2
- from torch.utils import data
3
- import numpy as np
4
- from os.path import join as pjoin
5
- import random
6
- import codecs as cs
7
- from tqdm import tqdm
8
-
9
-
10
-
11
- class VQMotionDataset(data.Dataset):
12
- def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8):
13
- self.window_size = window_size
14
- self.unit_length = unit_length
15
- self.feat_bias = feat_bias
16
-
17
- self.dataset_name = dataset_name
18
- min_motion_len = 40 if dataset_name =='t2m' else 24
19
-
20
- if dataset_name == 't2m':
21
- self.data_root = './dataset/HumanML3D'
22
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
23
- self.text_dir = pjoin(self.data_root, 'texts')
24
- self.joints_num = 22
25
- radius = 4
26
- fps = 20
27
- self.max_motion_length = 196
28
- dim_pose = 263
29
- self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
30
- #kinematic_chain = paramUtil.t2m_kinematic_chain
31
- elif dataset_name == 'kit':
32
- self.data_root = './dataset/KIT-ML'
33
- self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
34
- self.text_dir = pjoin(self.data_root, 'texts')
35
- self.joints_num = 21
36
- radius = 240 * 8
37
- fps = 12.5
38
- dim_pose = 251
39
- self.max_motion_length = 196
40
- self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
41
- #kinematic_chain = paramUtil.kit_kinematic_chain
42
-
43
- joints_num = self.joints_num
44
-
45
- mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
46
- std = np.load(pjoin(self.meta_dir, 'std.npy'))
47
-
48
- split_file = pjoin(self.data_root, 'train.txt')
49
-
50
- data_dict = {}
51
- id_list = []
52
- with cs.open(split_file, 'r') as f:
53
- for line in f.readlines():
54
- id_list.append(line.strip())
55
-
56
- new_name_list = []
57
- length_list = []
58
- for name in tqdm(id_list):
59
- try:
60
- motion = np.load(pjoin(self.motion_dir, name + '.npy'))
61
- if (len(motion)) < min_motion_len or (len(motion) >= 200):
62
- continue
63
-
64
- data_dict[name] = {'motion': motion,
65
- 'length': len(motion),
66
- 'name': name}
67
- new_name_list.append(name)
68
- length_list.append(len(motion))
69
- except:
70
- # Some motion may not exist in KIT dataset
71
- pass
72
-
73
-
74
- self.mean = mean
75
- self.std = std
76
- self.length_arr = np.array(length_list)
77
- self.data_dict = data_dict
78
- self.name_list = new_name_list
79
-
80
- def inv_transform(self, data):
81
- return data * self.std + self.mean
82
-
83
- def __len__(self):
84
- return len(self.data_dict)
85
-
86
- def __getitem__(self, item):
87
- name = self.name_list[item]
88
- data = self.data_dict[name]
89
- motion, m_length = data['motion'], data['length']
90
-
91
- m_length = (m_length // self.unit_length) * self.unit_length
92
-
93
- idx = random.randint(0, len(motion) - m_length)
94
- motion = motion[idx:idx+m_length]
95
-
96
- "Z Normalization"
97
- motion = (motion - self.mean) / self.std
98
-
99
- return motion, name
100
-
101
- def DATALoader(dataset_name,
102
- batch_size = 1,
103
- num_workers = 8, unit_length = 4) :
104
-
105
- train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length),
106
- batch_size,
107
- shuffle=True,
108
- num_workers=num_workers,
109
- #collate_fn=collate_fn,
110
- drop_last = True)
111
-
112
- return train_loader
113
-
114
- def cycle(iterable):
115
- while True:
116
- for x in iterable:
117
- yield x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/prepare/download_extractor.sh DELETED
@@ -1,15 +0,0 @@
1
- rm -rf checkpoints
2
- mkdir checkpoints
3
- cd checkpoints
4
- echo -e "Downloading extractors"
5
- gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view
6
- gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view
7
-
8
-
9
- unzip t2m.zip
10
- unzip kit.zip
11
-
12
- echo -e "Cleaning\n"
13
- rm t2m.zip
14
- rm kit.zip
15
- echo -e "Downloading done!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/prepare/download_glove.sh DELETED
@@ -1,9 +0,0 @@
1
- echo -e "Downloading glove (in use by the evaluators)"
2
- gdown --fuzzy https://drive.google.com/file/d/1bCeS6Sh_mLVTebxIgiUHgdPrroW06mb6/view?usp=sharing
3
- rm -rf glove
4
-
5
- unzip glove.zip
6
- echo -e "Cleaning\n"
7
- rm glove.zip
8
-
9
- echo -e "Downloading done!"
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/prepare/download_model.sh DELETED
@@ -1,12 +0,0 @@
1
-
2
- mkdir -p pretrained
3
- cd pretrained/
4
-
5
- echo -e "The pretrained model files will be stored in the 'pretrained' folder\n"
6
- gdown 1LaOvwypF-jM2Axnq5dc-Iuvv3w_G-WDE
7
-
8
- unzip VQTrans_pretrained.zip
9
- echo -e "Cleaning\n"
10
- rm VQTrans_pretrained.zip
11
-
12
- echo -e "Downloading done!"
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/dataset/prepare/download_smpl.sh DELETED
@@ -1,13 +0,0 @@
1
-
2
- mkdir -p body_models
3
- cd body_models/
4
-
5
- echo -e "The smpl files will be stored in the 'body_models/smpl/' folder\n"
6
- gdown 1INYlGA76ak_cKGzvpOV2Pe6RkYTlXTW2
7
- rm -rf smpl
8
-
9
- unzip smpl.zip
10
- echo -e "Cleaning\n"
11
- rm smpl.zip
12
-
13
- echo -e "Downloading done!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/environment.yml DELETED
@@ -1,121 +0,0 @@
1
- name: VQTrans
2
- channels:
3
- - pytorch
4
- - defaults
5
- dependencies:
6
- - _libgcc_mutex=0.1=main
7
- - _openmp_mutex=4.5=1_gnu
8
- - blas=1.0=mkl
9
- - bzip2=1.0.8=h7b6447c_0
10
- - ca-certificates=2021.7.5=h06a4308_1
11
- - certifi=2021.5.30=py38h06a4308_0
12
- - cudatoolkit=10.1.243=h6bb024c_0
13
- - ffmpeg=4.3=hf484d3e_0
14
- - freetype=2.10.4=h5ab3b9f_0
15
- - gmp=6.2.1=h2531618_2
16
- - gnutls=3.6.15=he1e5248_0
17
- - intel-openmp=2021.3.0=h06a4308_3350
18
- - jpeg=9b=h024ee3a_2
19
- - lame=3.100=h7b6447c_0
20
- - lcms2=2.12=h3be6417_0
21
- - ld_impl_linux-64=2.35.1=h7274673_9
22
- - libffi=3.3=he6710b0_2
23
- - libgcc-ng=9.3.0=h5101ec6_17
24
- - libgomp=9.3.0=h5101ec6_17
25
- - libiconv=1.15=h63c8f33_5
26
- - libidn2=2.3.2=h7f8727e_0
27
- - libpng=1.6.37=hbc83047_0
28
- - libstdcxx-ng=9.3.0=hd4cf53a_17
29
- - libtasn1=4.16.0=h27cfd23_0
30
- - libtiff=4.2.0=h85742a9_0
31
- - libunistring=0.9.10=h27cfd23_0
32
- - libuv=1.40.0=h7b6447c_0
33
- - libwebp-base=1.2.0=h27cfd23_0
34
- - lz4-c=1.9.3=h295c915_1
35
- - mkl=2021.3.0=h06a4308_520
36
- - mkl-service=2.4.0=py38h7f8727e_0
37
- - mkl_fft=1.3.0=py38h42c9631_2
38
- - mkl_random=1.2.2=py38h51133e4_0
39
- - ncurses=6.2=he6710b0_1
40
- - nettle=3.7.3=hbbd107a_1
41
- - ninja=1.10.2=hff7bd54_1
42
- - numpy=1.20.3=py38hf144106_0
43
- - numpy-base=1.20.3=py38h74d4b33_0
44
- - olefile=0.46=py_0
45
- - openh264=2.1.0=hd408876_0
46
- - openjpeg=2.3.0=h05c96fa_1
47
- - openssl=1.1.1k=h27cfd23_0
48
- - pillow=8.3.1=py38h2c7a002_0
49
- - pip=21.0.1=py38h06a4308_0
50
- - python=3.8.11=h12debd9_0_cpython
51
- - pytorch=1.8.1=py3.8_cuda10.1_cudnn7.6.3_0
52
- - readline=8.1=h27cfd23_0
53
- - setuptools=52.0.0=py38h06a4308_0
54
- - six=1.16.0=pyhd3eb1b0_0
55
- - sqlite=3.36.0=hc218d9a_0
56
- - tk=8.6.10=hbc83047_0
57
- - torchaudio=0.8.1=py38
58
- - torchvision=0.9.1=py38_cu101
59
- - typing_extensions=3.10.0.0=pyh06a4308_0
60
- - wheel=0.37.0=pyhd3eb1b0_0
61
- - xz=5.2.5=h7b6447c_0
62
- - zlib=1.2.11=h7b6447c_3
63
- - zstd=1.4.9=haebb681_0
64
- - pip:
65
- - absl-py==0.13.0
66
- - backcall==0.2.0
67
- - cachetools==4.2.2
68
- - charset-normalizer==2.0.4
69
- - chumpy==0.70
70
- - cycler==0.10.0
71
- - decorator==5.0.9
72
- - google-auth==1.35.0
73
- - google-auth-oauthlib==0.4.5
74
- - grpcio==1.39.0
75
- - idna==3.2
76
- - imageio==2.9.0
77
- - ipdb==0.13.9
78
- - ipython==7.26.0
79
- - ipython-genutils==0.2.0
80
- - jedi==0.18.0
81
- - joblib==1.0.1
82
- - kiwisolver==1.3.1
83
- - markdown==3.3.4
84
- - matplotlib==3.4.3
85
- - matplotlib-inline==0.1.2
86
- - oauthlib==3.1.1
87
- - pandas==1.3.2
88
- - parso==0.8.2
89
- - pexpect==4.8.0
90
- - pickleshare==0.7.5
91
- - prompt-toolkit==3.0.20
92
- - protobuf==3.17.3
93
- - ptyprocess==0.7.0
94
- - pyasn1==0.4.8
95
- - pyasn1-modules==0.2.8
96
- - pygments==2.10.0
97
- - pyparsing==2.4.7
98
- - python-dateutil==2.8.2
99
- - pytz==2021.1
100
- - pyyaml==5.4.1
101
- - requests==2.26.0
102
- - requests-oauthlib==1.3.0
103
- - rsa==4.7.2
104
- - scikit-learn==0.24.2
105
- - scipy==1.7.1
106
- - sklearn==0.0
107
- - smplx==0.1.28
108
- - tensorboard==2.6.0
109
- - tensorboard-data-server==0.6.1
110
- - tensorboard-plugin-wit==1.8.0
111
- - threadpoolctl==2.2.0
112
- - toml==0.10.2
113
- - tqdm==4.62.2
114
- - traitlets==5.0.5
115
- - urllib3==1.26.6
116
- - wcwidth==0.2.5
117
- - werkzeug==2.0.1
118
- - git+https://github.com/openai/CLIP.git
119
- - git+https://github.com/nghorbani/human_body_prior
120
- - gdown
121
- - moviepy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/__init__.py DELETED
File without changes
generate_human_motion/VQTrans/models/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (169 Bytes)
 
generate_human_motion/VQTrans/models/__pycache__/encdec.cpython-310.pyc DELETED
Binary file (2.05 kB)
 
generate_human_motion/VQTrans/models/__pycache__/pos_encoding.cpython-310.pyc DELETED
Binary file (1.78 kB)
 
generate_human_motion/VQTrans/models/__pycache__/quantize_cnn.cpython-310.pyc DELETED
Binary file (9.31 kB)
 
generate_human_motion/VQTrans/models/__pycache__/resnet.cpython-310.pyc DELETED
Binary file (2.81 kB)
 
generate_human_motion/VQTrans/models/__pycache__/rotation2xyz.cpython-310.pyc DELETED
Binary file (2.4 kB)
 
generate_human_motion/VQTrans/models/__pycache__/smpl.cpython-310.pyc DELETED
Binary file (3.45 kB)
 
generate_human_motion/VQTrans/models/__pycache__/t2m_trans.cpython-310.pyc DELETED
Binary file (6.89 kB)
 
generate_human_motion/VQTrans/models/__pycache__/vqvae.cpython-310.pyc DELETED
Binary file (3.54 kB)
 
generate_human_motion/VQTrans/models/encdec.py DELETED
@@ -1,67 +0,0 @@
1
- import torch.nn as nn
2
- from resnet import Resnet1D
3
-
4
- class Encoder(nn.Module):
5
- def __init__(self,
6
- input_emb_width = 3,
7
- output_emb_width = 512,
8
- down_t = 3,
9
- stride_t = 2,
10
- width = 512,
11
- depth = 3,
12
- dilation_growth_rate = 3,
13
- activation='relu',
14
- norm=None):
15
- super().__init__()
16
-
17
- blocks = []
18
- filter_t, pad_t = stride_t * 2, stride_t // 2
19
- blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
20
- blocks.append(nn.ReLU())
21
-
22
- for i in range(down_t):
23
- input_dim = width
24
- block = nn.Sequential(
25
- nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
26
- Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
27
- )
28
- blocks.append(block)
29
- blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
30
- self.model = nn.Sequential(*blocks)
31
-
32
- def forward(self, x):
33
- return self.model(x)
34
-
35
- class Decoder(nn.Module):
36
- def __init__(self,
37
- input_emb_width = 3,
38
- output_emb_width = 512,
39
- down_t = 3,
40
- stride_t = 2,
41
- width = 512,
42
- depth = 3,
43
- dilation_growth_rate = 3,
44
- activation='relu',
45
- norm=None):
46
- super().__init__()
47
- blocks = []
48
-
49
- filter_t, pad_t = stride_t * 2, stride_t // 2
50
- blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
51
- blocks.append(nn.ReLU())
52
- for i in range(down_t):
53
- out_dim = width
54
- block = nn.Sequential(
55
- Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
56
- nn.Upsample(scale_factor=2, mode='nearest'),
57
- nn.Conv1d(width, out_dim, 3, 1, 1)
58
- )
59
- blocks.append(block)
60
- blocks.append(nn.Conv1d(width, width, 3, 1, 1))
61
- blocks.append(nn.ReLU())
62
- blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
63
- self.model = nn.Sequential(*blocks)
64
-
65
- def forward(self, x):
66
- return self.model(x)
67
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/evaluator_wrapper.py DELETED
@@ -1,92 +0,0 @@
1
-
2
- import torch
3
- from os.path import join as pjoin
4
- import numpy as np
5
- from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo
6
- from utils.word_vectorizer import POS_enumerator
7
-
8
- def build_models(opt):
9
- movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
10
- text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
11
- pos_size=opt.dim_pos_ohot,
12
- hidden_size=opt.dim_text_hidden,
13
- output_size=opt.dim_coemb_hidden,
14
- device=opt.device)
15
-
16
- motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
17
- hidden_size=opt.dim_motion_hidden,
18
- output_size=opt.dim_coemb_hidden,
19
- device=opt.device)
20
-
21
- checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
22
- map_location=opt.device)
23
- movement_enc.load_state_dict(checkpoint['movement_encoder'])
24
- text_enc.load_state_dict(checkpoint['text_encoder'])
25
- motion_enc.load_state_dict(checkpoint['motion_encoder'])
26
- print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
27
- return text_enc, motion_enc, movement_enc
28
-
29
-
30
- class EvaluatorModelWrapper(object):
31
-
32
- def __init__(self, opt):
33
-
34
- if opt.dataset_name == 't2m':
35
- opt.dim_pose = 263
36
- elif opt.dataset_name == 'kit':
37
- opt.dim_pose = 251
38
- else:
39
- raise KeyError('Dataset not Recognized!!!')
40
-
41
- opt.dim_word = 300
42
- opt.max_motion_length = 196
43
- opt.dim_pos_ohot = len(POS_enumerator)
44
- opt.dim_motion_hidden = 1024
45
- opt.max_text_len = 20
46
- opt.dim_text_hidden = 512
47
- opt.dim_coemb_hidden = 512
48
-
49
- # print(opt)
50
-
51
- self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
52
- self.opt = opt
53
- self.device = opt.device
54
-
55
- self.text_encoder.to(opt.device)
56
- self.motion_encoder.to(opt.device)
57
- self.movement_encoder.to(opt.device)
58
-
59
- self.text_encoder.eval()
60
- self.motion_encoder.eval()
61
- self.movement_encoder.eval()
62
-
63
- # Please note that the results does not following the order of inputs
64
- def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
65
- with torch.no_grad():
66
- word_embs = word_embs.detach().to(self.device).float()
67
- pos_ohot = pos_ohot.detach().to(self.device).float()
68
- motions = motions.detach().to(self.device).float()
69
-
70
- '''Movement Encoding'''
71
- movements = self.movement_encoder(motions[..., :-4]).detach()
72
- m_lens = m_lens // self.opt.unit_length
73
- motion_embedding = self.motion_encoder(movements, m_lens)
74
-
75
- '''Text Encoding'''
76
- text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
77
- return text_embedding, motion_embedding
78
-
79
- # Please note that the results does not following the order of inputs
80
- def get_motion_embeddings(self, motions, m_lens):
81
- with torch.no_grad():
82
- motions = motions.detach().to(self.device).float()
83
-
84
- align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
85
- motions = motions[align_idx]
86
- m_lens = m_lens[align_idx]
87
-
88
- '''Movement Encoding'''
89
- movements = self.movement_encoder(motions[..., :-4]).detach()
90
- m_lens = m_lens // self.opt.unit_length
91
- motion_embedding = self.motion_encoder(movements, m_lens)
92
- return motion_embedding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/modules.py DELETED
@@ -1,109 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from torch.nn.utils.rnn import pack_padded_sequence
4
-
5
- def init_weight(m):
6
- if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
7
- nn.init.xavier_normal_(m.weight)
8
- # m.bias.data.fill_(0.01)
9
- if m.bias is not None:
10
- nn.init.constant_(m.bias, 0)
11
-
12
-
13
- class MovementConvEncoder(nn.Module):
14
- def __init__(self, input_size, hidden_size, output_size):
15
- super(MovementConvEncoder, self).__init__()
16
- self.main = nn.Sequential(
17
- nn.Conv1d(input_size, hidden_size, 4, 2, 1),
18
- nn.Dropout(0.2, inplace=True),
19
- nn.LeakyReLU(0.2, inplace=True),
20
- nn.Conv1d(hidden_size, output_size, 4, 2, 1),
21
- nn.Dropout(0.2, inplace=True),
22
- nn.LeakyReLU(0.2, inplace=True),
23
- )
24
- self.out_net = nn.Linear(output_size, output_size)
25
- self.main.apply(init_weight)
26
- self.out_net.apply(init_weight)
27
-
28
- def forward(self, inputs):
29
- inputs = inputs.permute(0, 2, 1)
30
- outputs = self.main(inputs).permute(0, 2, 1)
31
- # print(outputs.shape)
32
- return self.out_net(outputs)
33
-
34
-
35
-
36
- class TextEncoderBiGRUCo(nn.Module):
37
- def __init__(self, word_size, pos_size, hidden_size, output_size, device):
38
- super(TextEncoderBiGRUCo, self).__init__()
39
- self.device = device
40
-
41
- self.pos_emb = nn.Linear(pos_size, word_size)
42
- self.input_emb = nn.Linear(word_size, hidden_size)
43
- self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
44
- self.output_net = nn.Sequential(
45
- nn.Linear(hidden_size * 2, hidden_size),
46
- nn.LayerNorm(hidden_size),
47
- nn.LeakyReLU(0.2, inplace=True),
48
- nn.Linear(hidden_size, output_size)
49
- )
50
-
51
- self.input_emb.apply(init_weight)
52
- self.pos_emb.apply(init_weight)
53
- self.output_net.apply(init_weight)
54
- self.hidden_size = hidden_size
55
- self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
56
-
57
- # input(batch_size, seq_len, dim)
58
- def forward(self, word_embs, pos_onehot, cap_lens):
59
- num_samples = word_embs.shape[0]
60
-
61
- pos_embs = self.pos_emb(pos_onehot)
62
- inputs = word_embs + pos_embs
63
- input_embs = self.input_emb(inputs)
64
- hidden = self.hidden.repeat(1, num_samples, 1)
65
-
66
- cap_lens = cap_lens.data.tolist()
67
- emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
68
-
69
- gru_seq, gru_last = self.gru(emb, hidden)
70
-
71
- gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
72
-
73
- return self.output_net(gru_last)
74
-
75
-
76
- class MotionEncoderBiGRUCo(nn.Module):
77
- def __init__(self, input_size, hidden_size, output_size, device):
78
- super(MotionEncoderBiGRUCo, self).__init__()
79
- self.device = device
80
-
81
- self.input_emb = nn.Linear(input_size, hidden_size)
82
- self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
83
- self.output_net = nn.Sequential(
84
- nn.Linear(hidden_size*2, hidden_size),
85
- nn.LayerNorm(hidden_size),
86
- nn.LeakyReLU(0.2, inplace=True),
87
- nn.Linear(hidden_size, output_size)
88
- )
89
-
90
- self.input_emb.apply(init_weight)
91
- self.output_net.apply(init_weight)
92
- self.hidden_size = hidden_size
93
- self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
94
-
95
- # input(batch_size, seq_len, dim)
96
- def forward(self, inputs, m_lens):
97
- num_samples = inputs.shape[0]
98
-
99
- input_embs = self.input_emb(inputs)
100
- hidden = self.hidden.repeat(1, num_samples, 1)
101
-
102
- cap_lens = m_lens.data.tolist()
103
- emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
104
-
105
- gru_seq, gru_last = self.gru(emb, hidden)
106
-
107
- gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
108
-
109
- return self.output_net(gru_last)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/pos_encoding.py DELETED
@@ -1,43 +0,0 @@
1
- """
2
- Various positional encodings for the transformer.
3
- """
4
- import math
5
- import torch
6
- from torch import nn
7
-
8
- def PE1d_sincos(seq_length, dim):
9
- """
10
- :param d_model: dimension of the model
11
- :param length: length of positions
12
- :return: length*d_model position matrix
13
- """
14
- if dim % 2 != 0:
15
- raise ValueError("Cannot use sin/cos positional encoding with "
16
- "odd dim (got dim={:d})".format(dim))
17
- pe = torch.zeros(seq_length, dim)
18
- position = torch.arange(0, seq_length).unsqueeze(1)
19
- div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
20
- -(math.log(10000.0) / dim)))
21
- pe[:, 0::2] = torch.sin(position.float() * div_term)
22
- pe[:, 1::2] = torch.cos(position.float() * div_term)
23
-
24
- return pe.unsqueeze(1)
25
-
26
-
27
- class PositionEmbedding(nn.Module):
28
- """
29
- Absolute pos embedding (standard), learned.
30
- """
31
- def __init__(self, seq_length, dim, dropout, grad=False):
32
- super().__init__()
33
- self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
34
- self.dropout = nn.Dropout(p=dropout)
35
-
36
- def forward(self, x):
37
- # x.shape: bs, seq_len, feat_dim
38
- l = x.shape[1]
39
- x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
40
- x = self.dropout(x.permute(1, 0, 2))
41
- return x
42
-
43
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/quantize_cnn.py DELETED
@@ -1,415 +0,0 @@
1
- import numpy as np
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
-
6
- class QuantizeEMAReset(nn.Module):
7
- def __init__(self, nb_code, code_dim, args):
8
- super().__init__()
9
- self.nb_code = nb_code
10
- self.code_dim = code_dim
11
- self.mu = args.mu
12
- self.reset_codebook()
13
-
14
- def reset_codebook(self):
15
- self.init = False
16
- self.code_sum = None
17
- self.code_count = None
18
- if torch.cuda.is_available():
19
- self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
20
- else:
21
- self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim))
22
-
23
- def _tile(self, x):
24
- nb_code_x, code_dim = x.shape
25
- if nb_code_x < self.nb_code:
26
- n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
27
- std = 0.01 / np.sqrt(code_dim)
28
- out = x.repeat(n_repeats, 1)
29
- out = out + torch.randn_like(out) * std
30
- else :
31
- out = x
32
- return out
33
-
34
- def init_codebook(self, x):
35
- out = self._tile(x)
36
- self.codebook = out[:self.nb_code]
37
- self.code_sum = self.codebook.clone()
38
- self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
39
- self.init = True
40
-
41
- @torch.no_grad()
42
- def compute_perplexity(self, code_idx) :
43
- # Calculate new centres
44
- code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
45
- code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
46
-
47
- code_count = code_onehot.sum(dim=-1) # nb_code
48
- prob = code_count / torch.sum(code_count)
49
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
50
- return perplexity
51
-
52
- @torch.no_grad()
53
- def update_codebook(self, x, code_idx):
54
-
55
- code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
56
- code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
57
-
58
- code_sum = torch.matmul(code_onehot, x) # nb_code, w
59
- code_count = code_onehot.sum(dim=-1) # nb_code
60
-
61
- out = self._tile(x)
62
- code_rand = out[:self.nb_code]
63
-
64
- # Update centres
65
- self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
66
- self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
67
-
68
- usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
69
- code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
70
-
71
- self.codebook = usage * code_update + (1 - usage) * code_rand
72
- prob = code_count / torch.sum(code_count)
73
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
74
-
75
-
76
- return perplexity
77
-
78
- def preprocess(self, x):
79
- # NCT -> NTC -> [NT, C]
80
- x = x.permute(0, 2, 1).contiguous()
81
- x = x.view(-1, x.shape[-1])
82
- return x
83
-
84
- def quantize(self, x):
85
- # Calculate latent code x_l
86
- k_w = self.codebook.t()
87
- distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
88
- keepdim=True) # (N * L, b)
89
- _, code_idx = torch.min(distance, dim=-1)
90
- return code_idx
91
-
92
- def dequantize(self, code_idx):
93
- x = F.embedding(code_idx, self.codebook)
94
- return x
95
-
96
-
97
- def forward(self, x):
98
- N, width, T = x.shape
99
-
100
- # Preprocess
101
- x = self.preprocess(x)
102
-
103
- # Init codebook if not inited
104
- if self.training and not self.init:
105
- self.init_codebook(x)
106
-
107
- # quantize and dequantize through bottleneck
108
- code_idx = self.quantize(x)
109
- x_d = self.dequantize(code_idx)
110
-
111
- # Update embeddings
112
- if self.training:
113
- perplexity = self.update_codebook(x, code_idx)
114
- else :
115
- perplexity = self.compute_perplexity(code_idx)
116
-
117
- # Loss
118
- commit_loss = F.mse_loss(x, x_d.detach())
119
-
120
- # Passthrough
121
- x_d = x + (x_d - x).detach()
122
-
123
- # Postprocess
124
- x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
125
-
126
- return x_d, commit_loss, perplexity
127
-
128
-
129
-
130
- class Quantizer(nn.Module):
131
- def __init__(self, n_e, e_dim, beta):
132
- super(Quantizer, self).__init__()
133
-
134
- self.e_dim = e_dim
135
- self.n_e = n_e
136
- self.beta = beta
137
-
138
- self.embedding = nn.Embedding(self.n_e, self.e_dim)
139
- self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
140
-
141
- def forward(self, z):
142
-
143
- N, width, T = z.shape
144
- z = self.preprocess(z)
145
- assert z.shape[-1] == self.e_dim
146
- z_flattened = z.contiguous().view(-1, self.e_dim)
147
-
148
- # B x V
149
- d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
150
- torch.sum(self.embedding.weight**2, dim=1) - 2 * \
151
- torch.matmul(z_flattened, self.embedding.weight.t())
152
- # B x 1
153
- min_encoding_indices = torch.argmin(d, dim=1)
154
- z_q = self.embedding(min_encoding_indices).view(z.shape)
155
-
156
- # compute loss for embedding
157
- loss = torch.mean((z_q - z.detach())**2) + self.beta * \
158
- torch.mean((z_q.detach() - z)**2)
159
-
160
- # preserve gradients
161
- z_q = z + (z_q - z).detach()
162
- z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
163
-
164
- min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
165
- e_mean = torch.mean(min_encodings, dim=0)
166
- perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
167
- return z_q, loss, perplexity
168
-
169
- def quantize(self, z):
170
-
171
- assert z.shape[-1] == self.e_dim
172
-
173
- # B x V
174
- d = torch.sum(z ** 2, dim=1, keepdim=True) + \
175
- torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
176
- torch.matmul(z, self.embedding.weight.t())
177
- # B x 1
178
- min_encoding_indices = torch.argmin(d, dim=1)
179
- return min_encoding_indices
180
-
181
- def dequantize(self, indices):
182
-
183
- index_flattened = indices.view(-1)
184
- z_q = self.embedding(index_flattened)
185
- z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
186
- return z_q
187
-
188
- def preprocess(self, x):
189
- # NCT -> NTC -> [NT, C]
190
- x = x.permute(0, 2, 1).contiguous()
191
- x = x.view(-1, x.shape[-1])
192
- return x
193
-
194
-
195
-
196
- class QuantizeReset(nn.Module):
197
- def __init__(self, nb_code, code_dim, args):
198
- super().__init__()
199
- self.nb_code = nb_code
200
- self.code_dim = code_dim
201
- self.reset_codebook()
202
- self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
203
-
204
- def reset_codebook(self):
205
- self.init = False
206
- self.code_count = None
207
-
208
- def _tile(self, x):
209
- nb_code_x, code_dim = x.shape
210
- if nb_code_x < self.nb_code:
211
- n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
212
- std = 0.01 / np.sqrt(code_dim)
213
- out = x.repeat(n_repeats, 1)
214
- out = out + torch.randn_like(out) * std
215
- else :
216
- out = x
217
- return out
218
-
219
- def init_codebook(self, x):
220
- out = self._tile(x)
221
- self.codebook = nn.Parameter(out[:self.nb_code])
222
- self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
223
- self.init = True
224
-
225
- @torch.no_grad()
226
- def compute_perplexity(self, code_idx) :
227
- # Calculate new centres
228
- code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
229
- code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
230
-
231
- code_count = code_onehot.sum(dim=-1) # nb_code
232
- prob = code_count / torch.sum(code_count)
233
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
234
- return perplexity
235
-
236
- def update_codebook(self, x, code_idx):
237
-
238
- code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
239
- code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
240
-
241
- code_count = code_onehot.sum(dim=-1) # nb_code
242
-
243
- out = self._tile(x)
244
- code_rand = out[:self.nb_code]
245
-
246
- # Update centres
247
- self.code_count = code_count # nb_code
248
- usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
249
-
250
- self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
251
- prob = code_count / torch.sum(code_count)
252
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
253
-
254
-
255
- return perplexity
256
-
257
- def preprocess(self, x):
258
- # NCT -> NTC -> [NT, C]
259
- x = x.permute(0, 2, 1).contiguous()
260
- x = x.view(-1, x.shape[-1])
261
- return x
262
-
263
- def quantize(self, x):
264
- # Calculate latent code x_l
265
- k_w = self.codebook.t()
266
- distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
267
- keepdim=True) # (N * L, b)
268
- _, code_idx = torch.min(distance, dim=-1)
269
- return code_idx
270
-
271
- def dequantize(self, code_idx):
272
- x = F.embedding(code_idx, self.codebook)
273
- return x
274
-
275
-
276
- def forward(self, x):
277
- N, width, T = x.shape
278
- # Preprocess
279
- x = self.preprocess(x)
280
- # Init codebook if not inited
281
- if self.training and not self.init:
282
- self.init_codebook(x)
283
- # quantize and dequantize through bottleneck
284
- code_idx = self.quantize(x)
285
- x_d = self.dequantize(code_idx)
286
- # Update embeddings
287
- if self.training:
288
- perplexity = self.update_codebook(x, code_idx)
289
- else :
290
- perplexity = self.compute_perplexity(code_idx)
291
-
292
- # Loss
293
- commit_loss = F.mse_loss(x, x_d.detach())
294
-
295
- # Passthrough
296
- x_d = x + (x_d - x).detach()
297
-
298
- # Postprocess
299
- x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
300
-
301
- return x_d, commit_loss, perplexity
302
-
303
- class QuantizeEMA(nn.Module):
304
- def __init__(self, nb_code, code_dim, args):
305
- super().__init__()
306
- self.nb_code = nb_code
307
- self.code_dim = code_dim
308
- self.mu = 0.99
309
- self.reset_codebook()
310
-
311
- def reset_codebook(self):
312
- self.init = False
313
- self.code_sum = None
314
- self.code_count = None
315
- self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
316
-
317
- def _tile(self, x):
318
- nb_code_x, code_dim = x.shape
319
- if nb_code_x < self.nb_code:
320
- n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
321
- std = 0.01 / np.sqrt(code_dim)
322
- out = x.repeat(n_repeats, 1)
323
- out = out + torch.randn_like(out) * std
324
- else :
325
- out = x
326
- return out
327
-
328
- def init_codebook(self, x):
329
- out = self._tile(x)
330
- self.codebook = out[:self.nb_code]
331
- self.code_sum = self.codebook.clone()
332
- self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
333
- self.init = True
334
-
335
- @torch.no_grad()
336
- def compute_perplexity(self, code_idx) :
337
- # Calculate new centres
338
- code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
339
- code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
340
-
341
- code_count = code_onehot.sum(dim=-1) # nb_code
342
- prob = code_count / torch.sum(code_count)
343
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
344
- return perplexity
345
-
346
- @torch.no_grad()
347
- def update_codebook(self, x, code_idx):
348
-
349
- code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
350
- code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
351
-
352
- code_sum = torch.matmul(code_onehot, x) # nb_code, w
353
- code_count = code_onehot.sum(dim=-1) # nb_code
354
-
355
- # Update centres
356
- self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
357
- self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
358
-
359
- code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
360
-
361
- self.codebook = code_update
362
- prob = code_count / torch.sum(code_count)
363
- perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
364
-
365
- return perplexity
366
-
367
- def preprocess(self, x):
368
- # NCT -> NTC -> [NT, C]
369
- x = x.permute(0, 2, 1).contiguous()
370
- x = x.view(-1, x.shape[-1])
371
- return x
372
-
373
- def quantize(self, x):
374
- # Calculate latent code x_l
375
- k_w = self.codebook.t()
376
- distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
377
- keepdim=True) # (N * L, b)
378
- _, code_idx = torch.min(distance, dim=-1)
379
- return code_idx
380
-
381
- def dequantize(self, code_idx):
382
- x = F.embedding(code_idx, self.codebook)
383
- return x
384
-
385
-
386
- def forward(self, x):
387
- N, width, T = x.shape
388
-
389
- # Preprocess
390
- x = self.preprocess(x)
391
-
392
- # Init codebook if not inited
393
- if self.training and not self.init:
394
- self.init_codebook(x)
395
-
396
- # quantize and dequantize through bottleneck
397
- code_idx = self.quantize(x)
398
- x_d = self.dequantize(code_idx)
399
-
400
- # Update embeddings
401
- if self.training:
402
- perplexity = self.update_codebook(x, code_idx)
403
- else :
404
- perplexity = self.compute_perplexity(code_idx)
405
-
406
- # Loss
407
- commit_loss = F.mse_loss(x, x_d.detach())
408
-
409
- # Passthrough
410
- x_d = x + (x_d - x).detach()
411
-
412
- # Postprocess
413
- x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
414
-
415
- return x_d, commit_loss, perplexity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/resnet.py DELETED
@@ -1,82 +0,0 @@
1
- import torch.nn as nn
2
- import torch
3
-
4
- class nonlinearity(nn.Module):
5
- def __init__(self):
6
- super().__init__()
7
-
8
- def forward(self, x):
9
- # swish
10
- return x * torch.sigmoid(x)
11
-
12
- class ResConv1DBlock(nn.Module):
13
- def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
14
- super().__init__()
15
- padding = dilation
16
- self.norm = norm
17
- if norm == "LN":
18
- self.norm1 = nn.LayerNorm(n_in)
19
- self.norm2 = nn.LayerNorm(n_in)
20
- elif norm == "GN":
21
- self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
22
- self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
23
- elif norm == "BN":
24
- self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
25
- self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
26
-
27
- else:
28
- self.norm1 = nn.Identity()
29
- self.norm2 = nn.Identity()
30
-
31
- if activation == "relu":
32
- self.activation1 = nn.ReLU()
33
- self.activation2 = nn.ReLU()
34
-
35
- elif activation == "silu":
36
- self.activation1 = nonlinearity()
37
- self.activation2 = nonlinearity()
38
-
39
- elif activation == "gelu":
40
- self.activation1 = nn.GELU()
41
- self.activation2 = nn.GELU()
42
-
43
-
44
-
45
- self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
46
- self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
47
-
48
-
49
- def forward(self, x):
50
- x_orig = x
51
- if self.norm == "LN":
52
- x = self.norm1(x.transpose(-2, -1))
53
- x = self.activation1(x.transpose(-2, -1))
54
- else:
55
- x = self.norm1(x)
56
- x = self.activation1(x)
57
-
58
- x = self.conv1(x)
59
-
60
- if self.norm == "LN":
61
- x = self.norm2(x.transpose(-2, -1))
62
- x = self.activation2(x.transpose(-2, -1))
63
- else:
64
- x = self.norm2(x)
65
- x = self.activation2(x)
66
-
67
- x = self.conv2(x)
68
- x = x + x_orig
69
- return x
70
-
71
- class Resnet1D(nn.Module):
72
- def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
73
- super().__init__()
74
-
75
- blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
76
- if reverse_dilation:
77
- blocks = blocks[::-1]
78
-
79
- self.model = nn.Sequential(*blocks)
80
-
81
- def forward(self, x):
82
- return self.model(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/rotation2xyz.py DELETED
@@ -1,92 +0,0 @@
1
- # This code is based on https://github.com/Mathux/ACTOR.git
2
- import torch
3
- import VQTrans.utils.rotation_conversions as geometry
4
-
5
-
6
- from smpl import SMPL, JOINTSTYPE_ROOT
7
- # from .get_model import JOINTSTYPES
8
- JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]
9
-
10
-
11
- class Rotation2xyz:
12
- def __init__(self, device, dataset='amass'):
13
- self.device = device
14
- self.dataset = dataset
15
- self.smpl_model = SMPL().eval().to(device)
16
-
17
- def __call__(self, x, mask, pose_rep, translation, glob,
18
- jointstype, vertstrans, betas=None, beta=0,
19
- glob_rot=None, get_rotations_back=False, **kwargs):
20
- if pose_rep == "xyz":
21
- return x
22
-
23
- if mask is None:
24
- mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)
25
-
26
- if not glob and glob_rot is None:
27
- raise TypeError("You must specify global rotation if glob is False")
28
-
29
- if jointstype not in JOINTSTYPES:
30
- raise NotImplementedError("This jointstype is not implemented.")
31
-
32
- if translation:
33
- x_translations = x[:, -1, :3]
34
- x_rotations = x[:, :-1]
35
- else:
36
- x_rotations = x
37
-
38
- x_rotations = x_rotations.permute(0, 3, 1, 2)
39
- nsamples, time, njoints, feats = x_rotations.shape
40
-
41
- # Compute rotations (convert only masked sequences output)
42
- if pose_rep == "rotvec":
43
- rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
44
- elif pose_rep == "rotmat":
45
- rotations = x_rotations[mask].view(-1, njoints, 3, 3)
46
- elif pose_rep == "rotquat":
47
- rotations = geometry.quaternion_to_matrix(x_rotations[mask])
48
- elif pose_rep == "rot6d":
49
- rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
50
- else:
51
- raise NotImplementedError("No geometry for this one.")
52
-
53
- if not glob:
54
- global_orient = torch.tensor(glob_rot, device=x.device)
55
- global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
56
- global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
57
- else:
58
- global_orient = rotations[:, 0]
59
- rotations = rotations[:, 1:]
60
-
61
- if betas is None:
62
- betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
63
- dtype=rotations.dtype, device=rotations.device)
64
- betas[:, 1] = beta
65
- # import ipdb; ipdb.set_trace()
66
- out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)
67
-
68
- # get the desirable joints
69
- joints = out[jointstype]
70
-
71
- x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
72
- x_xyz[~mask] = 0
73
- x_xyz[mask] = joints
74
-
75
- x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()
76
-
77
- # the first translation root at the origin on the prediction
78
- if jointstype != "vertices":
79
- rootindex = JOINTSTYPE_ROOT[jointstype]
80
- x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]
81
-
82
- if translation and vertstrans:
83
- # the first translation root at the origin
84
- x_translations = x_translations - x_translations[:, :, [0]]
85
-
86
- # add the translation to all the joints
87
- x_xyz = x_xyz + x_translations[:, None, :, :]
88
-
89
- if get_rotations_back:
90
- return x_xyz, rotations, global_orient
91
- else:
92
- return x_xyz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/smpl.py DELETED
@@ -1,97 +0,0 @@
1
- # This code is based on https://github.com/Mathux/ACTOR.git
2
- import numpy as np
3
- import torch
4
-
5
- import contextlib
6
-
7
- from smplx import SMPLLayer as _SMPLLayer
8
- from smplx.lbs import vertices2joints
9
-
10
-
11
- # action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
12
- # change 0 and 8
13
- action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]
14
-
15
- from VQTrans.utils.config import SMPL_MODEL_PATH, JOINT_REGRESSOR_TRAIN_EXTRA
16
-
17
- JOINTSTYPE_ROOT = {"a2m": 0, # action2motion
18
- "smpl": 0,
19
- "a2mpl": 0, # set(smpl, a2m)
20
- "vibe": 8} # 0 is the 8 position: OP MidHip below
21
-
22
- JOINT_MAP = {
23
- 'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
24
- 'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
25
- 'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
26
- 'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
27
- 'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
28
- 'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
29
- 'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
30
- 'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
31
- 'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
32
- 'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
33
- 'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
34
- 'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
35
- 'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
36
- 'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
37
- 'Spine (H36M)': 51, 'Jaw (H36M)': 52,
38
- 'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
39
- 'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
40
- }
41
-
42
- JOINT_NAMES = [
43
- 'OP Nose', 'OP Neck', 'OP RShoulder',
44
- 'OP RElbow', 'OP RWrist', 'OP LShoulder',
45
- 'OP LElbow', 'OP LWrist', 'OP MidHip',
46
- 'OP RHip', 'OP RKnee', 'OP RAnkle',
47
- 'OP LHip', 'OP LKnee', 'OP LAnkle',
48
- 'OP REye', 'OP LEye', 'OP REar',
49
- 'OP LEar', 'OP LBigToe', 'OP LSmallToe',
50
- 'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
51
- 'Right Ankle', 'Right Knee', 'Right Hip',
52
- 'Left Hip', 'Left Knee', 'Left Ankle',
53
- 'Right Wrist', 'Right Elbow', 'Right Shoulder',
54
- 'Left Shoulder', 'Left Elbow', 'Left Wrist',
55
- 'Neck (LSP)', 'Top of Head (LSP)',
56
- 'Pelvis (MPII)', 'Thorax (MPII)',
57
- 'Spine (H36M)', 'Jaw (H36M)',
58
- 'Head (H36M)', 'Nose', 'Left Eye',
59
- 'Right Eye', 'Left Ear', 'Right Ear'
60
- ]
61
-
62
-
63
- # adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
64
- class SMPL(_SMPLLayer):
65
- """ Extension of the official SMPL implementation to support more joints """
66
-
67
- def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
68
- kwargs["model_path"] = model_path
69
-
70
- # remove the verbosity for the 10-shapes beta parameters
71
- with contextlib.redirect_stdout(None):
72
- super(SMPL, self).__init__(**kwargs)
73
-
74
- J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
75
- self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
76
- vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
77
- a2m_indexes = vibe_indexes[action2motion_joints]
78
- smpl_indexes = np.arange(24)
79
- a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])
80
-
81
- self.maps = {"vibe": vibe_indexes,
82
- "a2m": a2m_indexes,
83
- "smpl": smpl_indexes,
84
- "a2mpl": a2mpl_indexes}
85
-
86
- def forward(self, *args, **kwargs):
87
- smpl_output = super(SMPL, self).forward(*args, **kwargs)
88
-
89
- extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
90
- all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
91
-
92
- output = {"vertices": smpl_output.vertices}
93
-
94
- for joinstype, indexes in self.maps.items():
95
- output[joinstype] = all_joints[:, indexes]
96
-
97
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/t2m_trans.py DELETED
@@ -1,211 +0,0 @@
1
- import math
2
- import torch
3
- import torch.nn as nn
4
- from torch.nn import functional as F
5
- from torch.distributions import Categorical
6
- import pos_encoding as pos_encoding
7
-
8
- class Text2Motion_Transformer(nn.Module):
9
-
10
- def __init__(self,
11
- num_vq=1024,
12
- embed_dim=512,
13
- clip_dim=512,
14
- block_size=16,
15
- num_layers=2,
16
- n_head=8,
17
- drop_out_rate=0.1,
18
- fc_rate=4):
19
- super().__init__()
20
- self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
21
- self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
22
- self.block_size = block_size
23
- self.num_vq = num_vq
24
-
25
- def get_block_size(self):
26
- return self.block_size
27
-
28
- def forward(self, idxs, clip_feature):
29
- feat = self.trans_base(idxs, clip_feature)
30
- logits = self.trans_head(feat)
31
- return logits
32
-
33
- def sample(self, clip_feature, if_categorial=False):
34
- for k in range(self.block_size):
35
- if k == 0:
36
- x = []
37
- else:
38
- x = xs
39
- logits = self.forward(x, clip_feature)
40
- logits = logits[:, -1, :]
41
- probs = F.softmax(logits, dim=-1)
42
- if if_categorial:
43
- dist = Categorical(probs)
44
- idx = dist.sample()
45
- if idx == self.num_vq:
46
- break
47
- idx = idx.unsqueeze(-1)
48
- else:
49
- _, idx = torch.topk(probs, k=1, dim=-1)
50
- if idx[0] == self.num_vq:
51
- break
52
- # append to the sequence and continue
53
- if k == 0:
54
- xs = idx
55
- else:
56
- xs = torch.cat((xs, idx), dim=1)
57
-
58
- if k == self.block_size - 1:
59
- return xs[:, :-1]
60
- return xs
61
-
62
- class CausalCrossConditionalSelfAttention(nn.Module):
63
-
64
- def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
65
- super().__init__()
66
- assert embed_dim % 8 == 0
67
- # key, query, value projections for all heads
68
- self.key = nn.Linear(embed_dim, embed_dim)
69
- self.query = nn.Linear(embed_dim, embed_dim)
70
- self.value = nn.Linear(embed_dim, embed_dim)
71
-
72
- self.attn_drop = nn.Dropout(drop_out_rate)
73
- self.resid_drop = nn.Dropout(drop_out_rate)
74
-
75
- self.proj = nn.Linear(embed_dim, embed_dim)
76
- # causal mask to ensure that attention is only applied to the left in the input sequence
77
- self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
78
- self.n_head = n_head
79
-
80
- def forward(self, x):
81
- B, T, C = x.size()
82
-
83
- # calculate query, key, values for all heads in batch and move head forward to be the batch dim
84
- k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
85
- q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
86
- v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
87
- # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
88
- att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
89
- att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
90
- att = F.softmax(att, dim=-1)
91
- att = self.attn_drop(att)
92
- y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
93
- y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
94
-
95
- # output projection
96
- y = self.resid_drop(self.proj(y))
97
- return y
98
-
99
- class Block(nn.Module):
100
-
101
- def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
102
- super().__init__()
103
- self.ln1 = nn.LayerNorm(embed_dim)
104
- self.ln2 = nn.LayerNorm(embed_dim)
105
- self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
106
- self.mlp = nn.Sequential(
107
- nn.Linear(embed_dim, fc_rate * embed_dim),
108
- nn.GELU(),
109
- nn.Linear(fc_rate * embed_dim, embed_dim),
110
- nn.Dropout(drop_out_rate),
111
- )
112
-
113
- def forward(self, x):
114
- x = x + self.attn(self.ln1(x))
115
- x = x + self.mlp(self.ln2(x))
116
- return x
117
-
118
- class CrossCondTransBase(nn.Module):
119
-
120
- def __init__(self,
121
- num_vq=1024,
122
- embed_dim=512,
123
- clip_dim=512,
124
- block_size=16,
125
- num_layers=2,
126
- n_head=8,
127
- drop_out_rate=0.1,
128
- fc_rate=4):
129
- super().__init__()
130
- self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
131
- self.cond_emb = nn.Linear(clip_dim, embed_dim)
132
- self.pos_embedding = nn.Embedding(block_size, embed_dim)
133
- self.drop = nn.Dropout(drop_out_rate)
134
- # transformer block
135
- self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
136
- self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
137
-
138
- self.block_size = block_size
139
-
140
- self.apply(self._init_weights)
141
-
142
- def get_block_size(self):
143
- return self.block_size
144
-
145
- def _init_weights(self, module):
146
- if isinstance(module, (nn.Linear, nn.Embedding)):
147
- module.weight.data.normal_(mean=0.0, std=0.02)
148
- if isinstance(module, nn.Linear) and module.bias is not None:
149
- module.bias.data.zero_()
150
- elif isinstance(module, nn.LayerNorm):
151
- module.bias.data.zero_()
152
- module.weight.data.fill_(1.0)
153
-
154
- def forward(self, idx, clip_feature):
155
- if len(idx) == 0:
156
- token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
157
- else:
158
- b, t = idx.size()
159
- assert t <= self.block_size, "Cannot forward, model block size is exhausted."
160
- # forward the Trans model
161
- token_embeddings = self.tok_emb(idx)
162
- token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
163
-
164
- x = self.pos_embed(token_embeddings)
165
- x = self.blocks(x)
166
-
167
- return x
168
-
169
-
170
- class CrossCondTransHead(nn.Module):
171
-
172
- def __init__(self,
173
- num_vq=1024,
174
- embed_dim=512,
175
- block_size=16,
176
- num_layers=2,
177
- n_head=8,
178
- drop_out_rate=0.1,
179
- fc_rate=4):
180
- super().__init__()
181
-
182
- self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
183
- self.ln_f = nn.LayerNorm(embed_dim)
184
- self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
185
- self.block_size = block_size
186
-
187
- self.apply(self._init_weights)
188
-
189
- def get_block_size(self):
190
- return self.block_size
191
-
192
- def _init_weights(self, module):
193
- if isinstance(module, (nn.Linear, nn.Embedding)):
194
- module.weight.data.normal_(mean=0.0, std=0.02)
195
- if isinstance(module, nn.Linear) and module.bias is not None:
196
- module.bias.data.zero_()
197
- elif isinstance(module, nn.LayerNorm):
198
- module.bias.data.zero_()
199
- module.weight.data.fill_(1.0)
200
-
201
- def forward(self, x):
202
- x = self.blocks(x)
203
- x = self.ln_f(x)
204
- logits = self.head(x)
205
- return logits
206
-
207
-
208
-
209
-
210
-
211
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/models/vqvae.py DELETED
@@ -1,118 +0,0 @@
1
- import torch.nn as nn
2
- from encdec import Encoder, Decoder
3
- from quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
4
-
5
-
6
- class VQVAE_251(nn.Module):
7
- def __init__(self,
8
- args,
9
- nb_code=1024,
10
- code_dim=512,
11
- output_emb_width=512,
12
- down_t=3,
13
- stride_t=2,
14
- width=512,
15
- depth=3,
16
- dilation_growth_rate=3,
17
- activation='relu',
18
- norm=None):
19
-
20
- super().__init__()
21
- self.code_dim = code_dim
22
- self.num_code = nb_code
23
- self.quant = args.quantizer
24
- self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
25
- self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
26
- if args.quantizer == "ema_reset":
27
- self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
28
- elif args.quantizer == "orig":
29
- self.quantizer = Quantizer(nb_code, code_dim, 1.0)
30
- elif args.quantizer == "ema":
31
- self.quantizer = QuantizeEMA(nb_code, code_dim, args)
32
- elif args.quantizer == "reset":
33
- self.quantizer = QuantizeReset(nb_code, code_dim, args)
34
-
35
-
36
- def preprocess(self, x):
37
- # (bs, T, Jx3) -> (bs, Jx3, T)
38
- x = x.permute(0,2,1).float()
39
- return x
40
-
41
-
42
- def postprocess(self, x):
43
- # (bs, Jx3, T) -> (bs, T, Jx3)
44
- x = x.permute(0,2,1)
45
- return x
46
-
47
-
48
- def encode(self, x):
49
- N, T, _ = x.shape
50
- x_in = self.preprocess(x)
51
- x_encoder = self.encoder(x_in)
52
- x_encoder = self.postprocess(x_encoder)
53
- x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
54
- code_idx = self.quantizer.quantize(x_encoder)
55
- code_idx = code_idx.view(N, -1)
56
- return code_idx
57
-
58
-
59
- def forward(self, x):
60
-
61
- x_in = self.preprocess(x)
62
- # Encode
63
- x_encoder = self.encoder(x_in)
64
-
65
- ## quantization
66
- x_quantized, loss, perplexity = self.quantizer(x_encoder)
67
-
68
- ## decoder
69
- x_decoder = self.decoder(x_quantized)
70
- x_out = self.postprocess(x_decoder)
71
- return x_out, loss, perplexity
72
-
73
-
74
- def forward_decoder(self, x):
75
- x_d = self.quantizer.dequantize(x)
76
- x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
77
-
78
- # decoder
79
- x_decoder = self.decoder(x_d)
80
- x_out = self.postprocess(x_decoder)
81
- return x_out
82
-
83
-
84
-
85
- class HumanVQVAE(nn.Module):
86
- def __init__(self,
87
- args,
88
- nb_code=512,
89
- code_dim=512,
90
- output_emb_width=512,
91
- down_t=3,
92
- stride_t=2,
93
- width=512,
94
- depth=3,
95
- dilation_growth_rate=3,
96
- activation='relu',
97
- norm=None):
98
-
99
- super().__init__()
100
-
101
- self.nb_joints = 21 if args.dataname == 'kit' else 22
102
- self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
103
-
104
- def encode(self, x):
105
- b, t, c = x.size()
106
- quants = self.vqvae.encode(x) # (N, T)
107
- return quants
108
-
109
- def forward(self, x):
110
-
111
- x_out, loss, perplexity = self.vqvae(x)
112
-
113
- return x_out, loss, perplexity
114
-
115
- def forward_decoder(self, x):
116
- x_out = self.vqvae.forward_decoder(x)
117
- return x_out
118
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/options/__pycache__/option_transformer.cpython-310.pyc DELETED
Binary file (3.24 kB)
 
generate_human_motion/VQTrans/options/get_eval_option.py DELETED
@@ -1,83 +0,0 @@
1
- from argparse import Namespace
2
- import re
3
- from os.path import join as pjoin
4
-
5
-
6
- def is_float(numStr):
7
- flag = False
8
- numStr = str(numStr).strip().lstrip('-').lstrip('+')
9
- try:
10
- reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$')
11
- res = reg.match(str(numStr))
12
- if res:
13
- flag = True
14
- except Exception as ex:
15
- print("is_float() - error: " + str(ex))
16
- return flag
17
-
18
-
19
- def is_number(numStr):
20
- flag = False
21
- numStr = str(numStr).strip().lstrip('-').lstrip('+')
22
- if str(numStr).isdigit():
23
- flag = True
24
- return flag
25
-
26
-
27
- def get_opt(opt_path, device):
28
- opt = Namespace()
29
- opt_dict = vars(opt)
30
-
31
- skip = ('-------------- End ----------------',
32
- '------------ Options -------------',
33
- '\n')
34
- print('Reading', opt_path)
35
- with open(opt_path) as f:
36
- for line in f:
37
- if line.strip() not in skip:
38
- # print(line.strip())
39
- key, value = line.strip().split(': ')
40
- if value in ('True', 'False'):
41
- opt_dict[key] = (value == 'True')
42
- # print(key, value)
43
- elif is_float(value):
44
- opt_dict[key] = float(value)
45
- elif is_number(value):
46
- opt_dict[key] = int(value)
47
- else:
48
- opt_dict[key] = str(value)
49
-
50
- # print(opt)
51
- opt_dict['which_epoch'] = 'finest'
52
- opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
53
- opt.model_dir = pjoin(opt.save_root, 'model')
54
- opt.meta_dir = pjoin(opt.save_root, 'meta')
55
-
56
- if opt.dataset_name == 't2m':
57
- opt.data_root = './dataset/HumanML3D/'
58
- opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
59
- opt.text_dir = pjoin(opt.data_root, 'texts')
60
- opt.joints_num = 22
61
- opt.dim_pose = 263
62
- opt.max_motion_length = 196
63
- opt.max_motion_frame = 196
64
- opt.max_motion_token = 55
65
- elif opt.dataset_name == 'kit':
66
- opt.data_root = './dataset/KIT-ML/'
67
- opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
68
- opt.text_dir = pjoin(opt.data_root, 'texts')
69
- opt.joints_num = 21
70
- opt.dim_pose = 251
71
- opt.max_motion_length = 196
72
- opt.max_motion_frame = 196
73
- opt.max_motion_token = 55
74
- else:
75
- raise KeyError('Dataset not recognized')
76
-
77
- opt.dim_word = 300
78
- opt.num_classes = 200 // opt.unit_length
79
- opt.is_train = False
80
- opt.is_continue = False
81
- opt.device = device
82
-
83
- return opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/options/option_transformer.py DELETED
@@ -1,68 +0,0 @@
1
- import argparse
2
-
3
- def get_args_parser():
4
- parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for Amass',
5
- add_help=True,
6
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
7
-
8
- ## dataloader
9
-
10
- parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
11
- parser.add_argument('--batch-size', default=128, type=int, help='batch size')
12
- parser.add_argument('--fps', default=[20], nargs="+", type=int, help='frames per second')
13
- parser.add_argument('--seq-len', type=int, default=64, help='training motion length')
14
-
15
- ## optimization
16
- parser.add_argument('--total-iter', default=100000, type=int, help='number of total iterations to run')
17
- parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
18
- parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
19
- parser.add_argument('--lr-scheduler', default=[60000], nargs="+", type=int, help="learning rate schedule (iterations)")
20
- parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
21
-
22
- parser.add_argument('--weight-decay', default=1e-6, type=float, help='weight decay')
23
- parser.add_argument('--decay-option',default='all', type=str, choices=['all', 'noVQ'], help='disable weight decay on codebook')
24
- parser.add_argument('--optimizer',default='adamw', type=str, choices=['adam', 'adamw'], help='disable weight decay on codebook')
25
-
26
- ## vqvae arch
27
- parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
28
- parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
29
- parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
30
- parser.add_argument("--down-t", type=int, default=3, help="downsampling rate")
31
- parser.add_argument("--stride-t", type=int, default=2, help="stride size")
32
- parser.add_argument("--width", type=int, default=512, help="width of the network")
33
- parser.add_argument("--depth", type=int, default=3, help="depth of the network")
34
- parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
35
- parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
36
- parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
37
-
38
- ## gpt arch
39
- parser.add_argument("--block-size", type=int, default=25, help="seq len")
40
- parser.add_argument("--embed-dim-gpt", type=int, default=512, help="embedding dimension")
41
- parser.add_argument("--clip-dim", type=int, default=512, help="latent dimension in the clip feature")
42
- parser.add_argument("--num-layers", type=int, default=2, help="nb of transformer layers")
43
- parser.add_argument("--n-head-gpt", type=int, default=8, help="nb of heads")
44
- parser.add_argument("--ff-rate", type=int, default=4, help="feedforward size")
45
- parser.add_argument("--drop-out-rate", type=float, default=0.1, help="dropout ratio in the pos encoding")
46
-
47
- ## quantizer
48
- parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
49
- parser.add_argument('--quantbeta', type=float, default=1.0, help='dataset directory')
50
-
51
- ## resume
52
- parser.add_argument("--resume-pth", type=str, default=None, help='resume vq pth')
53
- parser.add_argument("--resume-trans", type=str, default=None, help='resume gpt pth')
54
-
55
-
56
- ## output directory
57
- parser.add_argument('--out-dir', type=str, default='output_GPT_Final/', help='output directory')
58
- parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
59
- parser.add_argument('--vq-name', type=str, default='exp_debug', help='name of the generated dataset .npy, will create a file inside out-dir')
60
- ## other
61
- parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
62
- parser.add_argument('--eval-iter', default=5000, type=int, help='evaluation frequency')
63
- parser.add_argument('--seed', default=123, type=int, help='seed for initializing training. ')
64
- parser.add_argument("--if-maxtest", action='store_true', help="test in max")
65
- parser.add_argument('--pkeep', type=float, default=1.0, help='keep rate for gpt training')
66
-
67
-
68
- return parser.parse_args()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/options/option_vq.py DELETED
@@ -1,61 +0,0 @@
1
- import argparse
2
-
3
- def get_args_parser():
4
- parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST',
5
- add_help=True,
6
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
7
-
8
- ## dataloader
9
- parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
10
- parser.add_argument('--batch-size', default=128, type=int, help='batch size')
11
- parser.add_argument('--window-size', type=int, default=64, help='training motion length')
12
-
13
- ## optimization
14
- parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run')
15
- parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
16
- parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
17
- parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)")
18
- parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
19
-
20
- parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
21
- parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
22
- parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss')
23
- parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss')
24
-
25
- ## vqvae arch
26
- parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
27
- parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
28
- parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
29
- parser.add_argument("--down-t", type=int, default=2, help="downsampling rate")
30
- parser.add_argument("--stride-t", type=int, default=2, help="stride size")
31
- parser.add_argument("--width", type=int, default=512, help="width of the network")
32
- parser.add_argument("--depth", type=int, default=3, help="depth of the network")
33
- parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
34
- parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
35
- parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
36
- parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory')
37
-
38
- ## quantizer
39
- parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
40
- parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ')
41
-
42
- ## resume
43
- parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ')
44
- parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT')
45
-
46
-
47
- ## output directory
48
- parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory')
49
- parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory')
50
- parser.add_argument('--visual-name', type=str, default='baseline', help='output directory')
51
- parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
52
- ## other
53
- parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
54
- parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency')
55
- parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.')
56
-
57
- parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions')
58
- parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations')
59
-
60
-
61
- return parser.parse_args()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
generate_human_motion/VQTrans/output/02ab4ad275eda92f352e2ed8d942eeef_pred.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:80236f3d1abbbbebe1d8c507192e43d4bc0a45530ba07878359aac3b32b497c8
3
- size 10253253
 
 
 
 
generate_human_motion/VQTrans/output/06c27c738e874b23067c006f52e18ebc_pred.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4ae194ab73d235b8db97d33b8d16fa5992eebd0d8a827ec795441e6f6000295
3
- size 4961733
 
 
 
 
generate_human_motion/VQTrans/output/0edd5f692aeec051d748dee0844f94e1_pred.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:00eb8444c64fc2e33a9e19f66c0f2c8f104000da647c0aabc510a5bb46afd1a9
3
- size 6946053
 
 
 
 
generate_human_motion/VQTrans/output/23cb7d0e26bb1646b3d386331971449c_pred.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e05998e1d4ac1eebcba89ec989112b6fcdb55c8cceeef2faea7cb564a381525
3
- size 16206213
 
 
 
 
generate_human_motion/VQTrans/output/3076bd805b9e1991722b4f9e3b821856_pred.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c52d09fabdcbe1c21231b9066d2c41a92aaf4975feac8362cc26dbaaaf823af
3
- size 13560453