File size: 14,411 Bytes
37aeb5b
 
 
8e8cc15
 
37aeb5b
 
 
f21e8dd
8e8cc15
 
5ce6f7e
 
f21e8dd
 
37aeb5b
8e8cc15
37aeb5b
 
 
 
 
 
 
 
8e8cc15
 
 
 
 
 
37aeb5b
 
f21e8dd
37aeb5b
f21e8dd
8e8cc15
 
37aeb5b
 
8e8cc15
f21e8dd
 
 
 
 
 
 
 
 
8e8cc15
f21e8dd
 
8e8cc15
 
 
 
 
 
 
 
f21e8dd
 
 
8e8cc15
 
f21e8dd
8e8cc15
37aeb5b
 
 
 
 
 
8e8cc15
 
 
 
 
37aeb5b
 
8e8cc15
 
37aeb5b
 
8e8cc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37aeb5b
f21e8dd
 
 
 
 
 
37aeb5b
 
8e8cc15
 
37aeb5b
 
 
8e8cc15
 
 
 
 
37aeb5b
 
8e8cc15
 
f21e8dd
 
8e8cc15
 
 
 
 
 
f21e8dd
 
8e8cc15
 
f21e8dd
8e8cc15
f21e8dd
8e8cc15
f21e8dd
8e8cc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37aeb5b
 
 
8e8cc15
 
f21e8dd
8e8cc15
 
 
f21e8dd
 
8e8cc15
 
 
 
 
 
f21e8dd
 
37aeb5b
8e8cc15
 
 
37aeb5b
 
8e8cc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37aeb5b
 
8e8cc15
 
37aeb5b
 
 
 
 
8e8cc15
 
 
37aeb5b
 
8e8cc15
37aeb5b
 
8e8cc15
37aeb5b
8e8cc15
 
 
 
 
 
 
 
 
 
 
 
 
37aeb5b
 
 
 
 
 
 
b8e0398
37aeb5b
8e8cc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37aeb5b
 
 
8e8cc15
 
 
 
 
 
 
37aeb5b
8e8cc15
37aeb5b
8e8cc15
 
37aeb5b
8e8cc15
 
 
 
 
 
37aeb5b
f21e8dd
 
8e8cc15
f21e8dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import torch
import numpy as np
from PIL import Image
import pymeshlab
import trimesh
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
from rembg import new_session, remove
import torch.nn.functional as F
from typing import List, Tuple
from pygltflib import GLTF2, Material, PbrMetallicRoughness
import time


# Constants

providers = [
    ('CUDAExecutionProvider', {
        'device_id': 0,
        'arena_extend_strategy': 'kSameAsRequested',
        'gpu_mem_limit': 8 * 1024 * 1024 * 1024,
        'cudnn_conv_algo_search': 'HEURISTIC',
    })
]

session = new_session(providers=providers)

NEG_PROMPT = "sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy,bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,(worst quality:1.4),(low quality:1.4)"

# Helper functions


def load_mesh_with_trimesh(file_name, file_type=None):
    mesh = trimesh.load(file_name, file_type=file_type)
    if isinstance(mesh, trimesh.Scene):
        mesh = _process_trimesh_scene(mesh)

    vertices, faces, colors = _extract_mesh_data(mesh)
    return vertices, faces, colors


def _process_trimesh_scene(mesh):
    from io import BytesIO
    with BytesIO() as f:
        mesh.export(f, file_type="obj")
        f.seek(0)
        mesh = trimesh.load(f, file_type="obj")
    if isinstance(mesh, trimesh.Scene):
        mesh = trimesh.util.concatenate(
            tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
                  for g in mesh.geometry.values()))
    return mesh


def _extract_mesh_data(mesh):
    vertices = torch.from_numpy(mesh.vertices).T
    faces = torch.from_numpy(mesh.faces).T
    colors = _get_mesh_colors(mesh)
    return vertices, faces, colors


def _get_mesh_colors(mesh):
    if mesh.visual is not None and hasattr(mesh.visual, 'vertex_colors'):
        return torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
    return torch.ones_like(mesh.vertices).T * 0.5


def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes:
    verts = torch.from_numpy(mesh.vertex_matrix()).float()
    faces = torch.from_numpy(mesh.face_matrix()).long()
    colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
    textures = TexturesVertex(verts_features=[colors])
    return Meshes(verts=[verts], faces=[faces], textures=textures)


def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh:
    colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [
                      0, 1], value=1).numpy().astype(np.float64)
    return pymeshlab.Mesh(
        vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
        face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
        v_normals_matrix=meshes.verts_normals_packed(
        ).cpu().float().numpy().astype(np.float64),
        v_color_matrix=colors_in)


def to_pyml_mesh(vertices, faces):
    return pymeshlab.Mesh(
        vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
        face_matrix=faces.cpu().long().numpy().astype(np.int32),
    )


def to_py3d_mesh(vertices, faces, normals=None):
    mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
    if normals is None:
        normals = mesh.verts_normals_packed()
    mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
    return mesh


def from_py3d_mesh(mesh):
    return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()

# Normal map rotation functions


def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
    angle_rad = np.radians(angle)
    R = np.array([
        [np.cos(angle_rad), 0, np.sin(angle_rad)],
        [0, 1, 0],
        [-np.sin(angle_rad), 0, np.cos(angle_rad)]
    ])
    return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)


def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray:
    n_views = len(normal_pils)
    ret = []
    for idx, rgba_normal in enumerate(normal_pils):
        normal_np, alpha_np = _process_normal_image(rgba_normal)
        normal_np = rotate_normalmap_by_angle(
            normal_np, rotate_direction * idx * (360 / n_views))
        rgba_normal_np = _combine_normal_and_alpha(normal_np, alpha_np)
        ret.append(_format_output(rgba_normal_np, return_types))
    return ret


def _process_normal_image(rgba_normal):
    normal_np = np.array(rgba_normal)[:, :, :3] / 255 * 2 - 1
    alpha_np = np.array(rgba_normal)[:, :, 3] / 255
    return normal_np, alpha_np


def _combine_normal_and_alpha(normal_np, alpha_np):
    normal_np = (normal_np + 1) / 2
    normal_np = normal_np * alpha_np[..., None]
    return np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255], axis=-1)


def _format_output(rgba_normal_np, return_types):
    if return_types == 'np':
        return rgba_normal_np
    elif return_types == 'pil':
        return Image.fromarray(rgba_normal_np.astype(np.uint8))
    else:
        raise ValueError(
            f"return_types should be 'np' or 'pil', but got {return_types}")


def rotate_normalmap_by_angle_torch(normal_map, angle):
    angle_rad = torch.tensor(np.radians(angle)).to(normal_map)
    R = torch.tensor([
        [torch.cos(angle_rad), 0, torch.sin(angle_rad)],
        [0, 1, 0],
        [-torch.sin(angle_rad), 0, torch.cos(angle_rad)]
    ]).to(normal_map)
    return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape)


def do_rotate(rgba_normal, angle):
    rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255
    rotated_normal_tensor = rotate_normalmap_by_angle_torch(
        rgba_normal[..., :3] * 2 - 1, angle)
    rotated_normal_tensor = (rotated_normal_tensor + 1) / 2
    rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]]
    return torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy()


def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1):
    n_views = len(normal_pils)
    ret = []
    for idx, rgba_normal in enumerate(normal_pils):
        angle = rotate_direction * idx * (360 / n_views)
        rgba_normal_np = do_rotate(np.array(rgba_normal), angle)
        ret.append(_format_output(rgba_normal_np, return_types))
    return ret

# Background change functions


def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
    new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
    return [_change_single_image_bkgd(rgba_img, new_bkgd) for rgba_img in img_pils]


def _change_single_image_bkgd(rgba_img, new_bkgd):
    img_np, alpha_np = np.array(
        rgba_img)[:, :, :3] / 255, np.array(rgba_img)[:, :, 3] / 255
    ori_bkgd = img_np[:1, :1]
    alpha_np_clamp = np.clip(alpha_np, 1e-6, 1)
    ori_img_np = (img_np - ori_bkgd *
                  (1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
    img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np *
                      alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
    rgba_img_np = np.concatenate(
        [img_np * 255, alpha_np[..., None] * 255], axis=-1)
    return Image.fromarray(rgba_img_np.astype(np.uint8))


def change_bkgd_to_normal(normal_pils) -> List[Image.Image]:
    n_views = len(normal_pils)
    return [_change_single_normal_bkgd(rgba_normal, idx, n_views) for idx, rgba_normal in enumerate(normal_pils)]


def _change_single_normal_bkgd(rgba_normal, idx, n_views):
    target_bkgd = rotate_normalmap_by_angle(
        np.array([[[0., 0., 1.]]]), idx * (360 / n_views))
    normal_np, alpha_np = np.array(
        rgba_normal)[:, :, :3] / 255 * 2 - 1, np.array(rgba_normal)[:, :, 3] / 255
    old_bkgd = normal_np[:1, :1]
    normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (
        1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None]
    normal_np = normal_np * alpha_np[..., None] + \
        target_bkgd * (1 - alpha_np[..., None])
    normal_np = (normal_np + 1) / 2
    rgba_normal_np = np.concatenate(
        [normal_np * 255, alpha_np[..., None] * 255], axis=-1)
    return Image.fromarray(rgba_normal_np.astype(np.uint8))

# Mesh and GLB handling functions


def fix_vert_color_glb(mesh_path):
    obj1 = GLTF2().load(mesh_path)
    obj1.meshes[0].primitives[0].material = 0
    obj1.materials.append(Material(
        pbrMetallicRoughness=PbrMetallicRoughness(
            baseColorFactor=[1.0, 1.0, 1.0, 1.0],
            metallicFactor=0.,
            roughnessFactor=1.0,
        ),
        emissiveFactor=[0.0, 0.0, 0.0],
        doubleSided=True,
    ))
    obj1.save(mesh_path)


def srgb_to_linear(c_srgb):
    return np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4).clip(0, 1.)


def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
    vertices, triangles, np_color = _extract_mesh_data_for_trimesh(meshes)

    if save_glb_path.endswith(".glb"):
        vertices[:, [0, 2]] = -vertices[:, [0, 2]]

    if apply_sRGB_to_LinearRGB:
        np_color = srgb_to_linear(np_color)

    mesh = trimesh.Trimesh(
        vertices=vertices, faces=triangles, vertex_colors=np_color)
    mesh.remove_unreferenced_vertices()
    mesh.export(save_glb_path)

    if save_glb_path.endswith(".glb"):
        fix_vert_color_glb(save_glb_path)
    print(f"saving to {save_glb_path}")


def _extract_mesh_data_for_trimesh(meshes):
    vertices = meshes.verts_packed().cpu().float().numpy()
    triangles = meshes.faces_packed().cpu().long().numpy()
    np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
    assert vertices.shape[0] == np_color.shape[0]
    assert np_color.shape[1] == 3
    assert 0 <= np_color.min() and np_color.max(
    ) <= 1, f"min={np_color.min()}, max={np_color.max()}"
    return vertices, triangles, np_color


def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]:
    import time
    if '.' in save_mesh_prefix:
        save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
    if with_timestamp:
        save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
    ret_mesh = save_mesh_prefix + ".glb"
    save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
    return ret_mesh, None

# Mesh cleaning and preprocessing functions (continued)


def simple_clean_mesh(pyml_mesh: pymeshlab.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
    ms = pymeshlab.MeshSet()
    ms.add_mesh(pyml_mesh, "cube_mesh")

    if apply_smooth:
        ms.apply_filter("apply_coord_laplacian_smoothing",
                        stepsmoothnum=stepsmoothnum, cotangentweight=False)

    if apply_sub_divide:
        ms.apply_filter("meshing_repair_non_manifold_vertices")
        ms.apply_filter("meshing_repair_non_manifold_edges",
                        method='Remove Faces')
        ms.apply_filter("meshing_surface_subdivision_loop", iterations=2,
                        threshold=pymeshlab.PercentageValue(sub_divide_threshold))

    return meshlab_mesh_to_py3dmesh(ms.current_mesh())


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img

    new_size = max(width, height)
    result = Image.new(pil_img.mode, (new_size, new_size), background_color)

    if width > height:
        result.paste(pil_img, (0, (width - height) // 2))
    else:
        result.paste(pil_img, ((height - width) // 2, 0))

    return result


def simple_preprocess(input_image, rembg_session=session, background_color=255):
    RES = 2048
    input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)

    if input_image.mode != 'RGBA':
        image_rem = input_image.convert('RGBA')
        input_image = remove(
            image_rem, alpha_matting=False, session=rembg_session)

    arr = np.asarray(input_image)
    alpha = arr[:, :, -1]

    x_nonzero, y_nonzero = (alpha > 60).sum(axis=1).nonzero()[
        0], (alpha > 60).sum(axis=0).nonzero()[0]
    x_min, x_max = int(x_nonzero.min()), int(x_nonzero.max())
    y_min, y_max = int(y_nonzero.min()), int(y_nonzero.max())

    arr = arr[x_min:x_max, y_min:y_max]
    input_image = Image.fromarray(arr)
    return expand2square(input_image, (background_color, background_color, background_color, 0))


def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
    new_bkgd = torch.tensor(
        new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
    imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32))
                       for img in img_pils]).to(device) / 255

    img_nps = imgs[..., :3]
    alpha_nps = imgs[..., 3]
    ori_bkgds = img_nps[:, :1, :1]

    alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
    ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))
                   ) / alpha_nps_clamp.unsqueeze(-1)
    ori_img_nps = torch.clamp(ori_img_nps, 0, 1)

    img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05,
                          ori_img_nps *
                          alpha_nps.unsqueeze(-1) + new_bkgd *
                          (1 - alpha_nps.unsqueeze(-1)),
                          new_bkgd)

    return torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)


def save_obj_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, **kwargs) -> Tuple[str, str]:
    if '.' in save_mesh_prefix:
        save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
    if with_timestamp:
        save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
    ret_mesh = save_mesh_prefix + ".obj"
    
    vertices = meshes.verts_packed().cpu().float().numpy()
    triangles = meshes.faces_packed().cpu().long().numpy()
    np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
    
    # Apply sRGB to LinearRGB conversion
    np_color = srgb_to_linear(np_color)
    
    mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
    mesh.remove_unreferenced_vertices()
    mesh.export(ret_mesh)
    
    print(f"Saved to {ret_mesh}")
    
    return ret_mesh, None