Spaces:
Runtime error
Runtime error
File size: 14,411 Bytes
37aeb5b 8e8cc15 37aeb5b f21e8dd 8e8cc15 5ce6f7e f21e8dd 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b f21e8dd 37aeb5b f21e8dd 8e8cc15 37aeb5b 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b f21e8dd 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 37aeb5b 8e8cc15 f21e8dd 8e8cc15 f21e8dd 8e8cc15 f21e8dd 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b b8e0398 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b 8e8cc15 37aeb5b f21e8dd 8e8cc15 f21e8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import torch
import numpy as np
from PIL import Image
import pymeshlab
import trimesh
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
from rembg import new_session, remove
import torch.nn.functional as F
from typing import List, Tuple
from pygltflib import GLTF2, Material, PbrMetallicRoughness
import time
# Constants
providers = [
('CUDAExecutionProvider', {
'device_id': 0,
'arena_extend_strategy': 'kSameAsRequested',
'gpu_mem_limit': 8 * 1024 * 1024 * 1024,
'cudnn_conv_algo_search': 'HEURISTIC',
})
]
session = new_session(providers=providers)
NEG_PROMPT = "sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy,bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,(worst quality:1.4),(low quality:1.4)"
# Helper functions
def load_mesh_with_trimesh(file_name, file_type=None):
mesh = trimesh.load(file_name, file_type=file_type)
if isinstance(mesh, trimesh.Scene):
mesh = _process_trimesh_scene(mesh)
vertices, faces, colors = _extract_mesh_data(mesh)
return vertices, faces, colors
def _process_trimesh_scene(mesh):
from io import BytesIO
with BytesIO() as f:
mesh.export(f, file_type="obj")
f.seek(0)
mesh = trimesh.load(f, file_type="obj")
if isinstance(mesh, trimesh.Scene):
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in mesh.geometry.values()))
return mesh
def _extract_mesh_data(mesh):
vertices = torch.from_numpy(mesh.vertices).T
faces = torch.from_numpy(mesh.faces).T
colors = _get_mesh_colors(mesh)
return vertices, faces, colors
def _get_mesh_colors(mesh):
if mesh.visual is not None and hasattr(mesh.visual, 'vertex_colors'):
return torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
return torch.ones_like(mesh.vertices).T * 0.5
def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes:
verts = torch.from_numpy(mesh.vertex_matrix()).float()
faces = torch.from_numpy(mesh.face_matrix()).long()
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
textures = TexturesVertex(verts_features=[colors])
return Meshes(verts=[verts], faces=[faces], textures=textures)
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh:
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [
0, 1], value=1).numpy().astype(np.float64)
return pymeshlab.Mesh(
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
v_normals_matrix=meshes.verts_normals_packed(
).cpu().float().numpy().astype(np.float64),
v_color_matrix=colors_in)
def to_pyml_mesh(vertices, faces):
return pymeshlab.Mesh(
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
face_matrix=faces.cpu().long().numpy().astype(np.int32),
)
def to_py3d_mesh(vertices, faces, normals=None):
mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
if normals is None:
normals = mesh.verts_normals_packed()
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
return mesh
def from_py3d_mesh(mesh):
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()
# Normal map rotation functions
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
angle_rad = np.radians(angle)
R = np.array([
[np.cos(angle_rad), 0, np.sin(angle_rad)],
[0, 1, 0],
[-np.sin(angle_rad), 0, np.cos(angle_rad)]
])
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)
def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray:
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
normal_np, alpha_np = _process_normal_image(rgba_normal)
normal_np = rotate_normalmap_by_angle(
normal_np, rotate_direction * idx * (360 / n_views))
rgba_normal_np = _combine_normal_and_alpha(normal_np, alpha_np)
ret.append(_format_output(rgba_normal_np, return_types))
return ret
def _process_normal_image(rgba_normal):
normal_np = np.array(rgba_normal)[:, :, :3] / 255 * 2 - 1
alpha_np = np.array(rgba_normal)[:, :, 3] / 255
return normal_np, alpha_np
def _combine_normal_and_alpha(normal_np, alpha_np):
normal_np = (normal_np + 1) / 2
normal_np = normal_np * alpha_np[..., None]
return np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255], axis=-1)
def _format_output(rgba_normal_np, return_types):
if return_types == 'np':
return rgba_normal_np
elif return_types == 'pil':
return Image.fromarray(rgba_normal_np.astype(np.uint8))
else:
raise ValueError(
f"return_types should be 'np' or 'pil', but got {return_types}")
def rotate_normalmap_by_angle_torch(normal_map, angle):
angle_rad = torch.tensor(np.radians(angle)).to(normal_map)
R = torch.tensor([
[torch.cos(angle_rad), 0, torch.sin(angle_rad)],
[0, 1, 0],
[-torch.sin(angle_rad), 0, torch.cos(angle_rad)]
]).to(normal_map)
return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape)
def do_rotate(rgba_normal, angle):
rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255
rotated_normal_tensor = rotate_normalmap_by_angle_torch(
rgba_normal[..., :3] * 2 - 1, angle)
rotated_normal_tensor = (rotated_normal_tensor + 1) / 2
rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]]
return torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy()
def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1):
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
angle = rotate_direction * idx * (360 / n_views)
rgba_normal_np = do_rotate(np.array(rgba_normal), angle)
ret.append(_format_output(rgba_normal_np, return_types))
return ret
# Background change functions
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
return [_change_single_image_bkgd(rgba_img, new_bkgd) for rgba_img in img_pils]
def _change_single_image_bkgd(rgba_img, new_bkgd):
img_np, alpha_np = np.array(
rgba_img)[:, :, :3] / 255, np.array(rgba_img)[:, :, 3] / 255
ori_bkgd = img_np[:1, :1]
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1)
ori_img_np = (img_np - ori_bkgd *
(1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np *
alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
rgba_img_np = np.concatenate(
[img_np * 255, alpha_np[..., None] * 255], axis=-1)
return Image.fromarray(rgba_img_np.astype(np.uint8))
def change_bkgd_to_normal(normal_pils) -> List[Image.Image]:
n_views = len(normal_pils)
return [_change_single_normal_bkgd(rgba_normal, idx, n_views) for idx, rgba_normal in enumerate(normal_pils)]
def _change_single_normal_bkgd(rgba_normal, idx, n_views):
target_bkgd = rotate_normalmap_by_angle(
np.array([[[0., 0., 1.]]]), idx * (360 / n_views))
normal_np, alpha_np = np.array(
rgba_normal)[:, :, :3] / 255 * 2 - 1, np.array(rgba_normal)[:, :, 3] / 255
old_bkgd = normal_np[:1, :1]
normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (
1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None]
normal_np = normal_np * alpha_np[..., None] + \
target_bkgd * (1 - alpha_np[..., None])
normal_np = (normal_np + 1) / 2
rgba_normal_np = np.concatenate(
[normal_np * 255, alpha_np[..., None] * 255], axis=-1)
return Image.fromarray(rgba_normal_np.astype(np.uint8))
# Mesh and GLB handling functions
def fix_vert_color_glb(mesh_path):
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness=PbrMetallicRoughness(
baseColorFactor=[1.0, 1.0, 1.0, 1.0],
metallicFactor=0.,
roughnessFactor=1.0,
),
emissiveFactor=[0.0, 0.0, 0.0],
doubleSided=True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
return np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4).clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
vertices, triangles, np_color = _extract_mesh_data_for_trimesh(meshes)
if save_glb_path.endswith(".glb"):
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
mesh = trimesh.Trimesh(
vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def _extract_mesh_data_for_trimesh(meshes):
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max(
) <= 1, f"min={np_color.min()}, max={np_color.max()}"
return vertices, triangles, np_color
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]:
import time
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".glb"
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
return ret_mesh, None
# Mesh cleaning and preprocessing functions (continued)
def simple_clean_mesh(pyml_mesh: pymeshlab.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
ms = pymeshlab.MeshSet()
ms.add_mesh(pyml_mesh, "cube_mesh")
if apply_smooth:
ms.apply_filter("apply_coord_laplacian_smoothing",
stepsmoothnum=stepsmoothnum, cotangentweight=False)
if apply_sub_divide:
ms.apply_filter("meshing_repair_non_manifold_vertices")
ms.apply_filter("meshing_repair_non_manifold_edges",
method='Remove Faces')
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2,
threshold=pymeshlab.PercentageValue(sub_divide_threshold))
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
new_size = max(width, height)
result = Image.new(pil_img.mode, (new_size, new_size), background_color)
if width > height:
result.paste(pil_img, (0, (width - height) // 2))
else:
result.paste(pil_img, ((height - width) // 2, 0))
return result
def simple_preprocess(input_image, rembg_session=session, background_color=255):
RES = 2048
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if input_image.mode != 'RGBA':
image_rem = input_image.convert('RGBA')
input_image = remove(
image_rem, alpha_matting=False, session=rembg_session)
arr = np.asarray(input_image)
alpha = arr[:, :, -1]
x_nonzero, y_nonzero = (alpha > 60).sum(axis=1).nonzero()[
0], (alpha > 60).sum(axis=0).nonzero()[0]
x_min, x_max = int(x_nonzero.min()), int(x_nonzero.max())
y_min, y_max = int(y_nonzero.min()), int(y_nonzero.max())
arr = arr[x_min:x_max, y_min:y_max]
input_image = Image.fromarray(arr)
return expand2square(input_image, (background_color, background_color, background_color, 0))
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
new_bkgd = torch.tensor(
new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32))
for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))
) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05,
ori_img_nps *
alpha_nps.unsqueeze(-1) + new_bkgd *
(1 - alpha_nps.unsqueeze(-1)),
new_bkgd)
return torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
def save_obj_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, **kwargs) -> Tuple[str, str]:
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".obj"
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
# Apply sRGB to LinearRGB conversion
np_color = srgb_to_linear(np_color)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
mesh.export(ret_mesh)
print(f"Saved to {ret_mesh}")
return ret_mesh, None |