et-viewer / CCD /src /main.py
azizinaghsh's picture
add seed for CCD
0d8e18a
'''
This script does conditional image generation on MNIST, using a diffusion model
This code is modified from,
https://github.com/cloneofsimo/minDiffusion
Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239
The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598
This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487
'''
import random
from typing import Dict, Tuple
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
import os
import clip
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)
class TimestepEmbedder(nn.Module):
def __init__(self, latent_dim, sequence_pos_encoder):
super().__init__()
self.latent_dim = latent_dim
self.sequence_pos_encoder = sequence_pos_encoder
time_embed_dim = self.latent_dim
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
def forward(self, timesteps):
return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)
class Transformer(nn.Module):
def __init__(self, n_feature, n_textemb, latent_dim=256,
num_heads=4, ff_size=1024, dropout=0.1, activation='gelu',
num_layers=4, cond_mask_prob=0.1):
super(Transformer, self).__init__()
self.n_feature = n_feature
self.n_textemb = n_textemb
self.num_heads = num_heads
self.ff_size = ff_size
self.dropout = dropout
self.activation = activation
self.num_layers = num_layers
self.latent_dim = latent_dim
self.cond_mask_prob = cond_mask_prob
self.embed_text = nn.Linear(self.n_textemb, self.latent_dim)
self.input_process = nn.Linear(self.n_feature, self.latent_dim)
seqTransEncoderlayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
nhead = self.num_heads,
dim_feedforward = self.ff_size,
dropout = self.dropout,
activation=self.activation)
self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderlayer,
num_layers = self.num_layers)
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)
self.output_process = nn.Linear(self.latent_dim, self.n_feature)
def mask_cond(self, cond, force_mask=False):
bs, d = cond.shape
if force_mask:
return torch.zeros_like(cond)
elif self.training and self.cond_mask_prob > 0.:
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1) # 1-> use null_cond, 0-> use real cond
return cond * (1. - mask)
else:
return cond
def forward(self, x, emb_text, timesteps, force_mask=False):
emb_time = self.embed_timestep(timesteps)
emb_text = self.embed_text(self.mask_cond(emb_text, force_mask=force_mask))
emb = (emb_time + emb_text)
x = self.input_process(x.permute(1, 0, 2))
xseq = torch.cat((emb, x), axis=0)
xseq = self.sequence_pos_encoder(xseq)
output = self.seqTransEncoder(xseq)[1:]
return self.output_process(output).permute(1, 0, 2)
def ddpm_schedules(beta1, beta2, T):
"""
Returns pre-computed schedules for DDPM sampling, training process.
"""
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp()
sqrtab = torch.sqrt(alphabar_t)
oneover_sqrta = 1 / torch.sqrt(alpha_t)
sqrtmab = torch.sqrt(1 - alphabar_t)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}}
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}}
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
class DDPM(nn.Module):
def __init__(self, nn_model, betas, n_T, device):
super(DDPM, self).__init__()
self.nn_model = nn_model.to(device)
# register_buffer allows accessing dictionary produced by ddpm_schedules
# e.g. can access self.sqrtab later
for k, v in ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.loss_mse = nn.MSELoss()
self.count = [0] * n_T
def forward(self, x, c):
"""
this method is used in training, so samples t and noise randomly
"""
_ts = torch.randint(1, self.n_T, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
noise = torch.randn_like(x) # eps ~ N(0, 1)
for t in _ts:
self.count[t] += 1
x_t = (
self.sqrtab[_ts, None, None] * x
+ self.sqrtmab[_ts, None, None] * noise
) # This is the x_t, which is sqrt(alphabar) x_0 + sqrt(1-alphabar) * eps
# We should predict the "error term" from this x_t. Loss is what we return.
# return MSE between added noise, and our predicted noise
return self.loss_mse(noise, self.nn_model(x_t, c, _ts))
def sample(self, n_sample, c, size, device, guide_w):
# we follow the guidance sampling scheme described in 'Classifier-Free Diffusion Guidance'
# to make the fwd passes efficient, we concat two versions of the dataset,
# one with context_mask=0 and the other context_mask=1
# we then mix the outputs with the guidance scale, w
# where w>0 means more guidance
x_i = torch.randn(n_sample, *size).to(device) # x_T ~ N(0, 1), sample initial noise
if c.shape[0] == 1:
c_i = c.repeat(n_sample, 1).float()
else:
c_i = c.float()
for i in tqdm(range(self.n_T, 0, -1)):
t_is = torch.tensor(i).to(device).repeat(n_sample)
# split predictions and compute weighting
eps1 = self.nn_model(x_i, c_i, t_is)
eps2 = self.nn_model(x_i, c_i, t_is, force_mask=True)
eps = eps2 + guide_w * (eps1 - eps2)
z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
x_i = (
self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i])
+ self.sqrt_beta_t[i] * z
)
return x_i
import torch.utils.data as data
class camdataset(data.Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __getitem__(self, index):
text = np.random.choice(self.label[index], np.random.randint(1, len(self.label[index])+1), replace=False)
d = self.data[index]
d = np.concatenate((d, d[-1:].repeat(300-len(d), 0)), 0)
return np.array(d, dtype="float32"), " ".join(text)
def __len__(self):
return len(self.data)
def train():
data = np.load("data.npy", allow_pickle=True)[()]
d = np.concatenate(data["cam"], 0)
Mean, Std = np.mean(d, 0), np.std(d, 0)
for i in range(len(data["cam"])):
data["cam"][i] = (data["cam"][i] - Mean[None, :]) / (Std[None, :]+1e-8)
# hardcoding these here
n_epoch = 20000
batch_size = 256
n_T = 1000 # 500
device = "cuda:0"
n_feature = 5
n_textemb = 512
lrate = 1e-4
save_model = True
save_dir = './weight/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T, device=device)
ddpm.to(device)
optim = torch.optim.Adam(ddpm.parameters(), lr=lrate)
dataloader = DataLoader(camdataset(data['cam'], data['info']), batch_size=batch_size, shuffle=True, num_workers=5)
if not os.path.exists("result"):
os.mkdir("result")
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
for ep in range(n_epoch):
print(f'epoch {ep}')
ddpm.train()
# linear lrate decay
optim.param_groups[0]['lr'] = lrate*(1-ep/n_epoch)
pbar = tqdm(dataloader)
loss_ema = None
for x, c in pbar:
optim.zero_grad()
x = x.to(device)
with torch.no_grad():
c = clip.tokenize(c, truncate=True).to(device)
c = model.encode_text(c).detach()
loss = ddpm(x, c)
loss.backward()
if loss_ema is None:
loss_ema = loss.item()
else:
loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
pbar.set_description(f"loss: {loss_ema:.4f}")
optim.step()
torch.save(ddpm.state_dict(), save_dir + f"latest.pth")
if save_model and ep % 100 == 0:
torch.save(ddpm.state_dict(), save_dir + f"model_{ep}.pth")
print('saved model at ' + save_dir + f"model_{ep}.pth")
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def gen(text: str, seed: int):
set_seed(seed)
script_dir = os.path.dirname(os.path.abspath(__file__))
mean_std_path = os.path.join(script_dir, "..", "checkpoints", "Mean_Std.npy")
latest_path = os.path.join(script_dir, "..", "checkpoints", "latest.pth")
if not os.path.exists(mean_std_path):
data = np.load("data.npy", allow_pickle=True)[()]
d = np.concatenate(data["cam"], 0)
Mean, Std = np.mean(d, 0), np.std(d, 0)
np.save("Mean_Std", {"Mean": Mean, "Std": Std})
d = np.load(mean_std_path, allow_pickle=True)[()]
Mean, Std = d["Mean"], d["Std"]
n_T = 1000 # 500
device = "cuda:0"
n_feature = 5
n_textemb = 512
ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T,
device=device)
ddpm.to(device)
# optionally load a model
ddpm.load_state_dict(torch.load(latest_path))
if not os.path.exists("gen"):
os.mkdir("gen")
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
#text = ["The camera pans to the character. The camera switches from right front view to right back view. The character is at the middle center of the screen. The camera shoots at close shot."]
result = []
def smooth(x, winds=10, T=4):
if T == 0:
return x
n_x = np.array(x)
for i in range(len(x)):
n_x[i] = np.mean(x[max(0, i - winds):min(len(x), i + winds), :], 0)
return smooth(n_x, T=T - 1)
with torch.no_grad():
c = clip.tokenize(text, truncate=True).to(device)
c = model.encode_text(c)
sample = ddpm.sample(10, c, (300, n_feature), device, guide_w=2.0)
sample = sample.detach().cpu().numpy()
for j in range(len(sample)):
s = smooth(sample[j] * Std[None, :] + Mean[None, :])
result.append(s)
return result
# with open("gen/{}.txt".format(j), "w") as f:
# for i in range(len(s)):
# txt = ""
# for k in range(5):
# txt += str(s[i][k]) + " "
# f.write(txt+"\n")
def generate_CCD_sample(text: str, seed : int):
return gen(text, seed)
if __name__ == "__main__":
import sys
mode = sys.argv[1]
if mode == 'train':
train()
elif mode == 'gen':
gen()
else:
print('Error, instruction {} is not in {train, gen}')