aiben / openai_server /server.py
abugaber's picture
Upload folder using huggingface_hub
3943768 verified
import copy
import io
import logging
import os
import sys
import ast
import json
import time
import traceback
import uuid
from traceback import print_exception
from typing import List, Dict, Optional, Literal, Union, Any
import filelock
import jsonschema
from pydantic import BaseModel, Field
from fastapi import FastAPI, Header, HTTPException, Form, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi import Request, Depends
from fastapi.responses import JSONResponse, Response, StreamingResponse
from fastapi import File, UploadFile
from sse_starlette import EventSourceResponse
from starlette.responses import PlainTextResponse
from openai_server.backend_utils import get_user_dir, run_upload_api, meta_ext
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
sys.path.append('openai_server')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s: %(message)s')
# https://github.com/h2oai/h2ogpt/issues/1132
# https://github.com/jquesnelle/transformers-openai-api
# https://community.openai.com/t/trying-to-turn-this-into-an-automatic-web-search-engine/306383
class Generation(BaseModel):
# put here things not supported by OpenAI but are by torch or vLLM
# https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py
top_k: int | None = 1
min_p: float | None = 0.0
class ResponseFormat(BaseModel):
# type must be "json_object" or "text"
type: str = Literal["text", "json_object", "json_code", "json_schema"]
json_schema: Optional[Dict[str, Any]] = None
strict: Optional[bool] = True
# https://github.com/vllm-project/vllm/blob/a3c226e7eb19b976a937e745f3867eb05f809278/vllm/entrypoints/openai/protocol.py#L62
class H2oGPTParams(BaseModel):
# keep in sync with evaluate()
# handled by extra_body passed to OpenAI API
enable_caching: bool | None = None
prompt_type: str | None = None
prompt_dict: Dict | str | None = None
chat_template: str | None = None
penalty_alpha: float | None = 0.0
num_beams: int | None = 1
min_new_tokens: int | None = 1
early_stopping: bool | None = False
max_time: float | None = 360
repetition_penalty: float | None = 1
num_return_sequences: int | None = 1
do_sample: bool | None = None
chat: bool | None = True
langchain_mode: str | None = 'LLM'
add_chat_history_to_context: bool | None = True
langchain_action: str | None = 'Query'
langchain_agents: List | None = []
top_k_docs: int | None = 10
chunk: bool | None = True
chunk_size: int | None = 512
document_subset: str | None = 'Relevant'
document_choice: str | None = 'All'
document_source_substrings: List | None = []
document_source_substrings_op: str | None = 'and'
document_content_substrings: List | None = []
document_content_substrings_op: str | None = 'and'
pre_prompt_query: str | None = None
prompt_query: str | None = None
pre_prompt_summary: str | None = None
prompt_summary: str | None = None
hyde_llm_prompt: str | None = None
all_docs_start_prompt: str | None = None,
all_docs_finish_prompt: str | None = None,
user_prompt_for_fake_system_prompt: str | None = None
json_object_prompt: str | None = None
json_object_prompt_simpler: str | None = None
json_code_prompt: str | None = None
json_code_prompt_if_no_schema: str | None = None
json_schema_instruction: str | None = None
json_preserve_system_prompt: bool | None = False
json_object_post_prompt_reminder: str | None = None
json_code_post_prompt_reminder: str | None = None
json_code2_post_prompt_reminder: str | None = None
system_prompt: str | None = 'auto'
image_audio_loaders: List | None = None
pdf_loaders: List | None = None
url_loaders: List | None = None
jq_schema: str | None = None
extract_frames: int | None = 10
llava_prompt: str | None = 'auto'
# visible_models
# h2ogpt_key,
add_search_to_context: bool | None = False
chat_conversation: List | None = []
text_context_list: List | None = []
docs_ordering_type: str | None = None
min_max_new_tokens: int | None = 512
max_input_tokens: int | None = -1
max_total_input_tokens: int | None = -1
docs_token_handling: str | None = None
docs_joiner: str | None = None
hyde_level: int | None = 0
hyde_template: str | None = 'auto'
hyde_show_only_final: bool | None = False
doc_json_mode: bool | None = False
metadata_in_context: Union[str, list] | None = 'auto'
chatbot_role: str | None = 'None'
speaker: str | None = 'None'
tts_language: str | None = 'autodetect'
tts_speed: float | None = 1.0
image_file: Union[str, list] | None = None
image_control: str | None = None
images_num_max: int | None = None
image_resolution: tuple | None = None
image_format: str | None = None
rotate_align_resize_image: bool | None = None
video_frame_period: int | None = None
image_batch_image_prompt: str | None = None
image_batch_final_prompt: str | None = None
image_batch_stream: bool | None = None
visible_vision_models: Union[str, int, list] | None = 'auto'
video_file: Union[str, list] | None = None
model_lock: dict | None = None
client_metadata: str | None = ''
response_format: Optional[ResponseFormat] = Field(
default=None,
description=(
"Similar to chat completion, this parameter specifies the format of "
"output. Only {'type': 'text' } or {'type': 'json_object'} or {'type': 'json_code'} or {'type': 'json_schema'} are "
"supported."
),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description="If specified, the output will follow the JSON schema.",
)
guided_regex: Optional[str] = Field(
default=None,
description=("If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
default=None,
description="If specified, the output will be exactly one of the choices.",
)
guided_grammar: Optional[str] = Field(
default=None,
description="If specified, the output will follow the context free grammar.",
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description="If specified, JSON white space will be restricted.",
)
class AgentParams(BaseModel):
use_agent: bool | None = False
autogen_stop_docker_executor: bool | None = False
autogen_run_code_in_docker: bool | None = False
autogen_max_consecutive_auto_reply: int | None = 10
autogen_max_turns: int | None = None
autogen_timeout: int = 120
agent_verbose: bool = False
autogen_cache_seed: int | None = None
agent_venv_dir: str | None = None
agent_code_writer_system_message: str | None = None
agent_system_site_packages: bool = True
autogen_code_restrictions_level: int = 2
autogen_silent_exchange: bool = True
agent_type: str | None = 'auto'
agent_accuracy: str | None = 'standard'
agent_work_dir: str | None = None
agent_chat_history: list | None = []
agent_files: list | None = []
class Params(H2oGPTParams, AgentParams):
# https://platform.openai.com/docs/api-reference/completions/create
user: str | None = Field(default=None, description="Track user")
model: str | None = Field(default=None, description="Choose model")
best_of: int | None = Field(default=1, description="Unused")
frequency_penalty: float | None = 0.0
max_tokens: int | None = 256
n: int | None = Field(default=1, description="Unused")
presence_penalty: float | None = 0.0
stop: str | List[str] | None = None
stop_token_ids: List[int] | None = None
stream: bool | None = False
temperature: float | None = 0.3
top_p: float | None = 1.0
seed: int | None = 0 # 0 means random seed if sampling
class CompletionParams(Params):
prompt: str | List[str]
logit_bias: dict | None = None
logprobs: int | None = None
class TextRequest(Generation, CompletionParams):
pass
class TextResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "text_completion"
usage: dict
class ChatParams(Params):
messages: List[dict]
tools: list | None = Field(default=None, description="WIP")
tool_choice: str | None = Field(default=None, description="WIP")
class ChatRequest(Generation, ChatParams):
# https://platform.openai.com/docs/api-reference/chat/create
pass
class ChatResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "chat.completion"
usage: dict
class Model(BaseModel):
id: str
object: str = 'model'
created: str = 'na'
owned_by: str = 'H2O.ai'
class ModelInfoResponse(BaseModel):
model_info: str
class ModelListResponse(BaseModel):
model_names: List[Model]
def verify_api_key(authorization: str = Header(None)) -> None:
server_api_key = os.getenv('H2OGPT_OPENAI_API_KEY', 'EMPTY')
if server_api_key:
h2ogpt_api_keys = [server_api_key]
else:
h2ogpt_api_keys = []
if server_api_key == 'EMPTY':
# dummy case since '' cannot be handled
# disables all auth
return
# assume if set file, shared keys for h2oGPT and OpenAI uses
server_api_key_file = os.getenv('H2OGPT_H2OGPT_API_KEYS')
# string of list case
if isinstance(server_api_key_file, str) and not os.path.isfile(server_api_key_file):
h2ogpt_api_keys.extend(ast.literal_eval(server_api_key_file))
# file case
if isinstance(server_api_key_file, str) and os.path.isfile(server_api_key_file):
with filelock.FileLock(server_api_key_file + '.lock'):
with open(server_api_key_file, 'rt') as f:
h2ogpt_api_keys.extend(json.load(f))
# no keys case
if len(h2ogpt_api_keys) == 0:
return
if any([authorization is not None and authorization == f"Bearer {x}" for x in h2ogpt_api_keys]):
return
raise HTTPException(status_code=401, detail="Unauthorized")
# Dependency that extracts the model and stores it in request state
async def extract_model_from_request(request: Request, request_data: ChatRequest):
request.state.model = request_data.model
return request_data
limiter = Limiter(key_func=get_remote_address)
global_limiter = Limiter(key_func=lambda: "global") # Global limiter with constant key
def model_rate_limit_key(request: Request):
# Extract the model from request data, assuming it's in the JSON body
# Since we are in FastAPI, we'll retrieve the model from the request object
# FastAPI request's `state` can store request data parsed by dependency injection
model = request.state.model # Set by a dependency or manually within the route
if not model:
raise ValueError("Model not provided in request data")
# Use the model name as the key for rate limiting
return model
def api_key_rate_limit_key(request: Request):
# Example: Extract user ID or API key for rate limiting
return request.headers.get("X-User-ID", 'unknown')
app = FastAPI()
check_key = [Depends(verify_api_key)]
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
# Add SlowAPI middleware for rate limiting (without limiter argument)
app.add_middleware(SlowAPIMiddleware)
# Set limiter in the app state
app.state.limiter = limiter
app.state.global_limiter = global_limiter
# Exception handler for rate limit exceeded
app.add_exception_handler(RateLimitExceeded,
lambda request, exc: JSONResponse({"error": "rate limit exceeded"}, status_code=429))
# https://platform.openai.com/docs/models/how-we-use-your-data
class InvalidRequestError(Exception):
pass
status_limiter_global = os.getenv('H2OGPT_STATUS_LIMITER_GLOBAL', '100/second')
status_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '3/second')
completion_limiter_global = os.getenv('H2OGPT_COMPLETION_LIMITER_GLOBAL', '30/second')
completion_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '5/second')
completion_limiter_model = os.getenv('H2OGPT_STATUS_LIMITER_MODEL', '1/second')
audio_limiter_global = os.getenv('H2OGPT_AUDIO_LIMITER_GLOBAL', '20/second')
audio_limiter_user = os.getenv('H2OGPT_AUDIO_LIMITER_USER', '5/second')
image_limiter_global = os.getenv('H2OGPT_IMAGE_LIMITER_GLOBAL', '5/second')
image_limiter_user = os.getenv('H2OGPT_IMAGE_LIMITER_USER', '1/second')
embedding_limiter_global = os.getenv('H2OGPT_EMBEDDING_LIMITER_GLOBAL', '30/second')
embedding_limiter_user = os.getenv('H2OGPT_EMBEDDING_LIMITER_USER', '1/second')
file_limiter_global = os.getenv('H2OGPT_FILE_LIMITER_GLOBAL', '50/second')
file_limiter_user = os.getenv('H2OGPT_FILE_LIMITER_USER', '20/second')
@app.get("/health")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def health(request: Request) -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/version")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def show_version(request: Request):
try:
from ..src.version import __version__
githash = __version__
except:
githash = 'unknown'
ver = {"version": githash}
return JSONResponse(content=ver)
@app.exception_handler(Exception)
async def validation_exception_handler(request, exc):
print_exception(exc)
exc2 = InvalidRequestError(str(exc))
return PlainTextResponse(str(exc2), status_code=400)
@app.options("/", dependencies=check_key)
async def options_route():
return JSONResponse(content="OK")
@app.post('/v1/completions', response_model=TextResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_completions(request: Request, request_data: TextRequest, authorization: str = Header(None)):
try:
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
if request_data.stream:
async def generator():
try:
from openai_server.backend import astream_completions
async for resp in astream_completions(request_data_dict, stream_output=True):
disconnected = await request.is_disconnected()
if disconnected:
return
yield {"data": json.dumps(resp)}
except Exception as e1:
print(traceback.format_exc())
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_completions
response = {}
async for resp in astream_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
def random_uuid() -> str:
return str(uuid.uuid4().hex)
class FunctionCall(BaseModel):
name: str
arguments: str
class ToolCall(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
function: FunctionCall
async def get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
try:
return _get_tool(request, request_data, authorization)
except Exception as e1:
# For non-streaming responses, we'll return a JSON error response
raise HTTPException(status_code=500, detail={
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": 500
}
})
async def _get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict = copy.deepcopy(request_data_dict)
tools = request_data_dict.get('tools')
model = request_data_dict.get('model')
prompt = ""
tool_names = []
tool_dict = {}
tool_dict['noop'] = None
for tool in tools:
assert tool['type'] == 'function'
tool_name = tool['function']['name']
tool_dict[tool_name] = tool
tool_description = tool['function']['description']
if 'claude' in model:
prompt += f'<tool>\n<name>\n{tool_name}\n</name>\n<description>\n{tool_description}\n</description>\n</tool>\n'
else:
prompt += f'# Tool Name\n\n{tool_name}\n# Tool Description:\n\n{tool_description}\n\n'
tool_names.append(tool_name)
if not request_data_dict['messages']:
raise ValueError("No messages in request, required for tool_choice='auto'")
original_prompt = request_data_dict['messages'][0]['content']
if 'claude' in model:
prompt += f"<prompt>\n{original_prompt}\n</prompt>\n"
else:
prompt += f"# Prompt\n\n{original_prompt}\n\n"
prompt += """
Choose the single tool that best solves the task inferred from the prompt. Never choose more than one tool, i.e. act like parallel_tool_calls=False. If no tool is a good fit, then only choose the noop tool.
"""
request_data_dict['guided_json'] = {
"type": "object",
"properties": {
"tool": {
"type": "string",
"description": "The name of the single best tool to use to solve the task inferred from the user prompt. If no tool is a good fit, then only choose the noop tool.",
"enum": tool_names + ['noop'],
},
},
"required": ["tool"]
}
request_data_dict['response_format'] = dict(type='json_object')
request_data_dict['text_context_list'] = []
request_data_dict['use_agent'] = False
request_data_dict['add_chat_history_to_context'] = False
request_data_dict['chat_conversation'] = []
request_data_dict['stream_output'] = False
request_data_dict['stream'] = False
request_data_dict['langchain_action'] = 'Query'
request_data_dict['langchain_agents'] = []
request_data_dict['system_prompt'] = "You are a JSON maker."
request_data_dict['max_tokens'] = max(request_data_dict.get('max_tokens', 256), 256)
request_data_dict['hyde_level'] = 0
messages = [{'content': prompt, 'role': 'user'}]
request_data_dict['messages'] = messages
# avoid recursion
request_data_dict['tools'] = None
# recurse
request_data = ChatRequest(**request_data_dict)
trials = 3
tool_name = None
msgs = []
for trial in range(trials):
response_json = await openai_chat_completions(request, request_data, authorization)
response_all = json.loads(response_json.body)
json_answer = json.loads(response_all['choices'][0]['message']['content'])
msgs.append(json_answer)
print(json_answer)
try:
jsonschema.validate(instance=json_answer, schema=request_data_dict['guided_json'])
except:
continue
if 'tool' not in json_answer:
continue
tool_name = json_answer['tool']
break
print(msgs)
if tool_name is None:
raise RuntimeError("Failed to get tool choice: %s" % msgs)
return tool_name, tool_dict[tool_name]
def tool_to_guided_json(tool):
guided_json = {
"type": "object",
"properties": tool,
}
return guided_json
@app.post('/v1/chat/completions', response_model=ChatResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_chat_completions(request: Request,
request_data: ChatRequest = Depends(extract_model_from_request),
authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
str_uuid = str(uuid.uuid4())
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items client_metadata: {request_data_dict['client_metadata']}")
else:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items")
# don't allow tool use with guided_json for now
if request_data_dict['guided_json'] and request_data_dict.get('tools'):
raise NotImplementedError("Cannot use tools with guided_json, because guided_json used for tool use.")
# extract tool or do auto
if request_data_dict.get('tool_choice') == 'auto' and request_data_dict.get('tools'):
tool_name_chosen, tool_chosen = await get_tool(request, request_data, authorization)
request_data_dict['tools'] = []
if tool_name_chosen != 'noop':
request_data_dict['guided_json'] = tool_to_guided_json(tool_chosen)
request_data_dict['tool_choice'] = tool_name_chosen
else:
request_data_dict['tool_choice'] = 'auto'
# handle json_schema -> guided_json
# https://platform.openai.com/docs/guides/structured-outputs/how-to-use?context=without_parse&lang=python
if request_data_dict['response_format'] and request_data_dict['response_format'].type == 'json_schema':
json_schema = request_data_dict['response_format'].json_schema
if json_schema:
# try to json.loads schema to ensure correct
if not isinstance(json_schema, dict):
json_schema_dict = json.loads(json_schema)
else:
json_schema_dict = json_schema
assert 'schema' in json_schema_dict, "Schema should start by containing 'name' and 'schema' keys."
schema = json_schema_dict['schema']
assert schema, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
if not isinstance(schema, dict):
schema_dict = json.loads(schema)
else:
schema_dict = schema
assert schema_dict, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
request_data_dict['guided_json'] = schema_dict
else:
raise ValueError("Specified response_format type json_schema but no json_schema provided.")
request_data_dict['response_format'] = ResponseFormat(type='json_object')
if request_data.stream:
from openai_server.backend import astream_chat_completions
async def generator():
try:
async for resp1 in astream_chat_completions(request_data_dict, stream_output=True):
if await request.is_disconnected():
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions disconnected {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return
yield {"data": json.dumps(resp1)}
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
except Exception as e1:
print(traceback.format_exc())
# Instead of raising an HTTPException, we'll yield a special error message
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
print(error_response)
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions error {str_uuid}: client_metadata: {request_data_dict['client_metadata']}: {error_response}")
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# avoid sending more data back as exception, just be done
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_chat_completions
try:
response = {}
async for resp in astream_chat_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions non-streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return JSONResponse(response)
except Exception as e:
traceback.print_exc()
# For non-streaming responses, we'll return a JSON error response
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
print(error_response)
raise HTTPException(status_code=500, detail=error_response)
# https://platform.openai.com/docs/api-reference/models/list
@app.get("/v1/models", dependencies=check_key)
@app.get("/v1/models/{model}", dependencies=check_key)
@app.get("/v1/models/{repo}/{model}", dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_models(request: Request):
path = request.url.path
model_name = path[len('/v1/models/'):]
from openai_server.backend import get_client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
for model_i, model in enumerate(model_dict):
model_dict[model_i].update(dict(id=model.get('base_model'), object='model', created='NA', owned_by='H2O.ai'))
if not model_name:
response = {
"object": "list",
"data": model_dict,
}
return JSONResponse(response)
else:
model_info = [x for x in model_dict if x.get('base_model') == model_name]
if model_info:
model_info = model_info[0]
response = model_info.copy() if model_info else {}
if model_info is None:
raise ValueError("No such model %s" % model_name)
return JSONResponse(response)
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_model_info(request: Request):
from openai_server.backend import get_model_info
return JSONResponse(content=get_model_info())
@app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_list_models(request: Request):
from openai_server.backend import get_model_list
return JSONResponse(content=[dict(id=x) for x in get_model_list()])
# Define your request data model
class AudiotoTextRequest(BaseModel):
model: str = ''
file: str
response_format: str = 'text' # FIXME unused (https://platform.openai.com/docs/api-reference/audio/createTranscription#images/create-response_format)
stream: bool = True # NOTE: No effect on OpenAI API client, would have to use direct API
timestamp_granularities: list = ["word"] # FIXME unused
chunk: Union[str, int] = 'silence' # or 'interval' No effect on OpenAI API client, would have to use direct API
@app.post('/v1/audio/transcriptions', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_transcription(request: Request):
try:
form = await request.form()
audio_file = await form["file"].read()
model = form["model"]
stream = form.get("stream", False)
response_format = form.get("response_format", 'text')
chunk = form.get("chunk", 'interval')
request_data = dict(model=model, stream=stream, audio_file=audio_file, response_format=response_format,
chunk=chunk)
if stream:
from openai_server.backend import audio_to_text
async def generator():
try:
async for resp in audio_to_text(**request_data):
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
except Exception as e1:
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# raise e1 # This will close the connection after sending the error
return
return EventSourceResponse(generator())
else:
from openai_server.backend import _audio_to_text
response = ''
async for response1 in _audio_to_text(**request_data):
response = response1
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
# Define your request data model
class AudioTextRequest(BaseModel):
model: str = ''
voice: str = '' # overrides both chatbot_role and speaker if set
input: str
response_format: str = 'wav' # "mp3", "opus", "aac", "flac", "wav", "pcm"
stream: bool = True
stream_strip: bool = True
chatbot_role: str = "Female AI Assistant" # Coqui TTS
speaker: str = "SLT (female)" # Microsoft TTS
def modify_wav_header(wav_bytes):
# Ensure the bytes start with the 'RIFF' identifier
if wav_bytes[:4] != b'RIFF':
raise ValueError("This is not a valid WAV file.")
# Get current size (which we will fake)
original_size = int.from_bytes(wav_bytes[4:8], byteorder='little')
# print("Original size:", original_size)
# Calculate fake size (Maximum value for 32-bit unsigned int minus 8)
fake_size = (2 ** 30 - 1) - 8
modified_size_bytes = fake_size.to_bytes(4, byteorder='little')
# Replace the original size with the fake size in the RIFF header
modified_wav_bytes = wav_bytes[:4] + modified_size_bytes + wav_bytes[8:]
# Find the 'data' chunk and modify its size too
data_chunk_pos = modified_wav_bytes.find(b'data')
if data_chunk_pos == -1:
raise ValueError("Data chunk not found in WAV file.")
# Set a large fake size for the data chunk as well
modified_wav_bytes = (
modified_wav_bytes[:data_chunk_pos + 4] + # 'data' text
modified_size_bytes + # fake size for data chunk
modified_wav_bytes[data_chunk_pos + 8:] # rest of data
)
return modified_wav_bytes
@app.post('/v1/audio/speech', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_to_speech(request: Request):
try:
request_data = await request.json()
audio_request = AudioTextRequest(**request_data)
if audio_request.stream:
from openai_server.backend import text_to_audio
async def generator():
try:
chunki = 0
async for chunk in text_to_audio(**dict(audio_request)):
disconnected = await request.is_disconnected()
if disconnected:
break
if chunki == 0 and audio_request.response_format == 'wav':
# pretend longer than is, like OpenAI does
chunk = modify_wav_header(chunk)
# h2oGPT sends each chunk as full object, we need rest to be raw data without header for real streaming
if chunki > 0 and audio_request.stream_strip:
from pydub import AudioSegment
chunk = AudioSegment.from_file(io.BytesIO(chunk),
format=audio_request.response_format).raw_data
yield chunk
chunki += 1
except Exception as e:
# For streaming audio, we can't send a JSON error response in the middle of the stream
# Instead, we'll log the error and stop the stream
print(f"Error in audio streaming: {str(e)}")
return # This will effectively close the stream
return StreamingResponse(generator(), media_type=f"audio/{audio_request.response_format}")
else:
from openai_server.backend import text_to_audio
response = b''
async for response1 in text_to_audio(**dict(audio_request)):
response = response1
return Response(content=response, media_type=f"audio/{audio_request.response_format}")
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
return JSONResponse(status_code=500, content=error_response)
class ImageGenerationRequest(BaseModel):
model: str = ''
prompt: str
size: str = '1024x1024'
quality: str = 'standard'
n: int = 1
response_format: str = 'url' # FIXME: https://platform.openai.com/docs/api-reference/images/create#images/create-response_format
style: str = 'vivid'
user: str = None
@app.post('/v1/images/generations', dependencies=check_key)
@limiter.limit(image_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(image_limiter_global)
async def handle_image_generation(request: Request):
try:
body = await request.json()
model = body.get('model', '') # will choose first if nothing passed
prompt = body['prompt']
size = body.get('size', '1024x1024')
quality = body.get('quality', 'standard')
guidance_scale = body.get('guidance_scale')
num_inference_steps = body.get('num_inference_steps')
n = body.get('n', 1) # ignore the batch limits of max 10
response_format = body.get('response_format', 'b64_json') # or url
# TODO: Why not using image_request? size, quality and stuff?
image_request = dict(model=model, prompt=prompt, size=size, quality=quality, n=n,
response_format=response_format, guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps)
except KeyError as e:
raise HTTPException(status_code=400, detail=f"Missing key in request body: {str(e)}")
# no streaming
from openai_server.backend import astream_completions
body_image = dict(prompt=prompt, langchain_action='ImageGen', visible_image_models=model,
image_size=size,
image_quality=quality,
image_guidance_scale=guidance_scale,
image_num_inference_steps=num_inference_steps)
response = {}
async for resp in astream_completions(body_image, stream_output=False):
response = resp
if 'choices' in response:
image = response['choices'][0]['text'][0]
else:
image = b''
resp = {
'created': int(time.time()),
'data': []
}
import base64
if os.path.isfile(image):
with open(image, 'rb') as f:
image = f.read()
encoded_image = base64.b64encode(image).decode('utf-8')
if response_format == 'b64_json':
resp['data'].extend([{'b64_json': encoded_image}])
return JSONResponse(resp)
else:
# FIXME: jpg vs. others
resp['data'].extend([{'url': f'data:image/jpg;base64,{encoded_image}'}])
return JSONResponse(resp)
class EmbeddingsResponse(BaseModel):
index: int
embedding: List[float]
object: str = "embedding"
class EmbeddingsRequest(BaseModel):
input: str | List[str] | List[int] | List[List[int]]
model: str | None = Field(default=None, description="Unused parameter.")
encoding_format: str = Field(default="float", description="float or base64.")
user: str | None = Field(default=None, description="Unused parameter.")
@app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key)
@limiter.limit(embedding_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(embedding_limiter_global)
async def handle_embeddings(request: Request, request_data: EmbeddingsRequest):
# https://docs.portkey.ai/docs/api-reference/embeddings
text = request_data.input
model = request_data.model
encoding_format = request_data.encoding_format
str_uuid = str(uuid.uuid4())
logging.info(
f"Embeddings request {str_uuid}: {len(text)} items, model: {model}, encoding_format: {encoding_format}")
from openai_server.backend import text_to_embedding
response = text_to_embedding(model, text, encoding_format)
try:
return JSONResponse(response)
except Exception as e:
traceback.print_exc()
print(str(e))
finally:
if response:
logging.info(
f"Done embeddings response {str_uuid}: {len(response['data'])} items, model: {model}, encoding_format: {encoding_format}")
else:
logging.error(f"No embeddings response {str_uuid}")
# https://platform.openai.com/docs/api-reference/files
class UploadFileResponse(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
@app.post("/v1/files", response_model=UploadFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def upload_file(
request: Request,
file: UploadFile = File(...),
purpose: str = Form(...),
authorization: str = Header(None)
):
content = await file.read()
filename = file.filename
response_dict = run_upload_api(content, filename, purpose, authorization)
response = UploadFileResponse(**response_dict)
return response
class FileData(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
class ListFilesResponse(BaseModel):
data: List[FileData]
@app.get("/v1/files", response_model=ListFilesResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def list_files(request: Request, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
if not user_dir:
raise HTTPException(status_code=404, detail="No user_dir for authorization: %s" % authorization)
if not os.path.isdir(user_dir):
os.makedirs(user_dir, exist_ok=True)
if not os.path.exists(user_dir):
raise HTTPException(status_code=404, detail="Directory not found")
files_list = []
for file_id in os.listdir(user_dir):
file_path = os.path.join(user_dir, file_id)
if file_path.endswith(meta_ext):
continue
if os.path.isfile(file_path):
file_stat = os.stat(file_path)
file_path_meta = os.path.join(user_dir, file_id + meta_ext)
if os.path.isfile(file_path_meta):
with open(file_path_meta, "rt") as f:
meta = json.loads(f.read())
else:
meta = {}
files_list.append(
FileData(
id=file_id,
object="file",
bytes=meta.get('bytes', file_stat.st_size),
created_at=meta.get('created_at', int(file_stat.st_ctime)),
filename=meta.get('filename', file_id),
purpose=meta.get('purpose', "unknown"),
)
)
return ListFilesResponse(data=files_list)
class RetrieveFileResponse(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
@app.get("/v1/files/{file_id}", response_model=RetrieveFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def retrieve_file(request: Request, file_id: str, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"retrieve_file: {file_id}: File not found")
file_path_meta = os.path.join(user_dir, file_id + meta_ext)
if os.path.isfile(file_path_meta):
with open(file_path_meta, "rt") as f:
meta = json.loads(f.read())
else:
meta = {}
file_stat = os.stat(file_path)
response = RetrieveFileResponse(
id=file_id,
object="file",
bytes=meta.get('bytes', file_stat.st_size),
created_at=meta.get('created_at', int(file_stat.st_ctime)),
filename=meta.get('filename', file_id),
purpose=meta.get('purpose', "unknown"),
)
return response
class DeleteFileResponse(BaseModel):
id: str
object: str
deleted: bool
@app.delete("/v1/files/{file_id}", response_model=DeleteFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def delete_file(request: Request, file_id: str, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"delete_file {file_id}: File not found")
try:
os.remove(file_path)
deleted = True
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred while deleting the file: {str(e)}")
response = DeleteFileResponse(
id=file_id,
object="file",
deleted=deleted
)
return response
@app.get("/v1/files/{file_id}/content", dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def retrieve_file_content(request: Request, file_id: str, stream: bool = Query(False),
authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"retrieve_file_content: {file_id}: File not found")
if stream:
def iter_file():
with open(file_path, mode="rb") as file_like:
while chunk := file_like.read(1024):
yield chunk
return StreamingResponse(iter_file(), media_type="application/octet-stream")
else:
with open(file_path, mode="rb") as file:
content = file.read()
return Response(content, media_type="application/octet-stream")