Spaces:
Runtime error
Runtime error
File size: 6,054 Bytes
b1d9c58 aff35cb f887b2e b1d9c58 f887b2e aff35cb b1d9c58 aff35cb 9989061 94c58a1 f887b2e b1d9c58 aff35cb b1d9c58 9989061 e1d0160 b1d9c58 e1d0160 b1d9c58 e1d0160 b1d9c58 e1d0160 b1d9c58 a562c0d b1d9c58 e1d0160 b1d9c58 e1d0160 aff35cb 49130e6 aff35cb b1d9c58 aff35cb f887b2e aff35cb f887b2e aff35cb f887b2e aff35cb f887b2e aff35cb e1d0160 aff35cb f887b2e aff35cb 94c58a1 aff35cb 94c58a1 aff35cb 94c58a1 aff35cb 94c58a1 aff35cb 49130e6 a562c0d 45f8739 a562c0d 49130e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import json
import psutil
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import tarfile
from typing import List, Tuple
import boto3
class CustomerSupportBot:
def __init__(self, model_path="models/customer_support_gpt"):
"""
Initialize the customer support bot with the fine-tuned model.
Args:
model_path (str): Path to the saved model and tokenizer
"""
self.process = psutil.Process(os.getpid())
self.model_path = model_path
self.model_file_path = os.path.join(self.model_path, "model.tar.gz")
self.s3 = boto3.client("s3")
self.model_key = "models/model.tar.gz"
self.bucket_name = "customer-support-gpt"
# Download and load the model
self.download_and_load_model()
def download_and_load_model(self):
# Check if the model directory exists
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
# Download model.tar.gz from S3 if not already downloaded
if not os.path.exists(self.model_file_path):
print("Downloading model from S3...")
self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path)
print("Download complete. Extracting model files...")
# Extract the model files
with tarfile.open(self.model_file_path, "r:gz") as tar:
tar.extractall(self.model_path)
# Load the model and tokenizer from extracted files
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModelForCausalLM.from_pretrained(self.model_path)
print("Model and tokenizer loaded successfully.")
# Move model to GPU if available
self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Tokenize input text
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
# Generate response using the model
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
top_p=0.95,
top_k=50
)
# Decode and format the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Response:")[-1].strip()
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot(model_path="/app/models")
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
return interface
if __name__ == "__main__":
demo = create_chat_interface()
demo.launch(
share=True,
server_name="0.0.0.0", # Makes the server accessible from other machines
server_port=7860, # Specify the port
debug=True,
inline=False#, server_port=6006
)
|