Spaces:
Runtime error
Runtime error
File size: 10,550 Bytes
b1d9c58 aff35cb f887b2e b1d9c58 f887b2e aff35cb b1d9c58 aff35cb 9989061 cef9c21 94c58a1 f887b2e b1d9c58 aff35cb b1d9c58 9989061 e1d0160 b1d9c58 e1d0160 b1d9c58 e1d0160 b1d9c58 e1d0160 b1d9c58 a562c0d b1d9c58 e1d0160 67d5dc2 b1d9c58 e1d0160 aff35cb 49130e6 aff35cb b1d9c58 cef9c21 c95a175 aff35cb f887b2e aff35cb f887b2e aff35cb f887b2e aff35cb f887b2e aff35cb e1d0160 e05da78 67d5dc2 aff35cb f887b2e aff35cb 94c58a1 aff35cb 94c58a1 aff35cb 94c58a1 c95a175 aff35cb 94c58a1 aff35cb cef9c21 aff35cb 3b21bbe cef9c21 45f8739 cef9c21 49130e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import json
import psutil
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import tarfile
from typing import List, Tuple
import boto3
from flask import Flask, Response, jsonify, request
import threading
import psutil
import logging
from waitress import serve
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HealthCheckServer:
def __init__(self, bot=None):
self.app = Flask(__name__)
self.bot = bot
# Health check endpoint
@self.app.route("/ping", methods=["GET"])
def ping():
try:
# Check system health
healthy = self.check_system_health()
if healthy:
logger.info("Health check passed")
return Response(response='\n', status=200, mimetype='application/json')
else:
logger.error("Health check failed")
return Response(response='\n', status=500, mimetype='application/json')
except Exception as e:
logger.error(f"Health check error: {str(e)}")
return Response(response='\n', status=500, mimetype='application/json')
# Inference endpoint
@self.app.route("/invocations", methods=["POST"])
def invocations():
try:
if not request.is_json:
return Response(response='This predictor only supports JSON data',
status=415,
mimetype='text/plain')
data = request.get_json()
message = data.get('message', '')
if not message:
return Response(response=json.dumps({"error": "No message provided"}),
status=400,
mimetype='application/json')
response = self.bot.generate_response(message)
return Response(response=json.dumps({"response": response}),
status=200,
mimetype='application/json')
except Exception as e:
logger.error(f"Inference error: {str(e)}")
return Response(response=json.dumps({"error": str(e)}),
status=500,
mimetype='application/json')
def check_system_health(self):
"""Check if system and model are healthy"""
try:
# Check if model is loaded
if self.bot and not hasattr(self.bot, 'model'):
logger.error("Model not loaded")
return False
# Check memory usage
mem = psutil.virtual_memory()
if mem.percent > 90:
logger.error(f"High memory usage: {mem.percent}%")
return False
# Check CPU usage
if psutil.cpu_percent() > 95:
logger.error(f"High CPU usage: {psutil.cpu_percent()}%")
return False
# Log current resource usage
logger.info(f"System health: Memory {mem.percent}%, CPU {psutil.cpu_percent()}%")
return True
except Exception as e:
logger.error(f"Health check error: {str(e)}")
return False
def run(self):
"""Run the health check server"""
logger.info("Starting health check server on port 8080...")
serve(self.app, host='0.0.0.0', port=8080)
class CustomerSupportBot:
def __init__(self, model_path="models/customer_support_gpt"):
"""
Initialize the customer support bot with the fine-tuned model.
Args:
model_path (str): Path to the saved model and tokenizer
"""
self.process = psutil.Process(os.getpid())
self.model_path = model_path
self.model_file_path = os.path.join(self.model_path, "model.tar.gz")
self.s3 = boto3.client("s3")
self.model_key = "models/model.tar.gz"
self.bucket_name = "customer-support-gpt"
# Download and load the model
self.download_and_load_model()
def download_and_load_model(self):
# Check if the model directory exists
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
# Download model.tar.gz from S3 if not already downloaded
if not os.path.exists(self.model_file_path):
print("Downloading model from S3...")
self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path)
print("Download complete. Extracting model files...")
# Extract the model files
with tarfile.open(self.model_file_path, "r:gz") as tar:
tar.extractall(self.model_path)
# Load the model and tokenizer from extracted files
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModelForCausalLM.from_pretrained(self.model_path)
print("Model and tokenizer loaded successfully.")
# Move model to GPU if available
self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
print(f'Model loaded on device: {self.device}')
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Tokenize input text
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
# Generate response using the model
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
top_p=0.95,
top_k=50
)
# Decode and format the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Response:")[-1].strip()
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot(model_path="/app/models")
# Start health check server
health_server = HealthCheckServer(bot)
health_thread = threading.Thread(target=health_server.run, daemon=True)
health_thread.start()
# Function to run initial query
def initial_query():
welcome_message = "Hello! I'm your customer support assistant. How can I help you today?"
return "", [(None, welcome_message)]
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box",
# type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
print("Interface created successfully.")
# call the initial query function
# run a query first how are you and predict the output
print(predict("How are you", []))
# run a command which checks the resource usage
print(f'Bot Resource Usage : {bot.monitor_resources()}')
# show full system usage
print(f'CPU Percentage : {psutil.cpu_percent()}')
print(f'RAM Usage : {psutil.virtual_memory()}')
print(f'Swap Memory : {psutil.swap_memory()}')
return interface
if __name__ == "__main__":
demo = create_chat_interface()
print("Starting Gradio server...")
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860, # Changed to 7860 for Gradio
debug=True,
inline=False
)
|