File size: 10,550 Bytes
b1d9c58
aff35cb
f887b2e
b1d9c58
f887b2e
aff35cb
b1d9c58
aff35cb
9989061
cef9c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c58a1
f887b2e
b1d9c58
 
 
 
 
 
 
aff35cb
b1d9c58
 
9989061
 
 
e1d0160
b1d9c58
 
 
 
 
 
 
 
 
 
 
 
 
e1d0160
b1d9c58
 
 
e1d0160
b1d9c58
 
 
 
e1d0160
b1d9c58
a562c0d
b1d9c58
e1d0160
67d5dc2
 
b1d9c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d0160
aff35cb
 
 
 
 
 
 
 
 
 
49130e6
aff35cb
b1d9c58
cef9c21
 
 
 
 
c95a175
 
 
 
 
aff35cb
 
 
 
f887b2e
aff35cb
f887b2e
aff35cb
 
 
f887b2e
aff35cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f887b2e
aff35cb
 
e1d0160
e05da78
67d5dc2
aff35cb
 
 
 
 
 
 
 
 
f887b2e
aff35cb
 
 
94c58a1
aff35cb
 
 
 
 
 
 
 
 
 
 
 
 
94c58a1
aff35cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c58a1
c95a175
 
 
 
 
 
 
 
 
 
 
 
 
 
aff35cb
94c58a1
 
aff35cb
cef9c21
aff35cb
3b21bbe
cef9c21
 
45f8739
cef9c21
49130e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import json
import psutil
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import tarfile
from typing import List, Tuple
import boto3
from flask import Flask, Response, jsonify, request
import threading
import psutil
import logging
from waitress import serve

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class HealthCheckServer:
    def __init__(self, bot=None):
        self.app = Flask(__name__)
        self.bot = bot
        
        # Health check endpoint
        @self.app.route("/ping", methods=["GET"])
        def ping():
            try:
                # Check system health
                healthy = self.check_system_health()
                if healthy:
                    logger.info("Health check passed")
                    return Response(response='\n', status=200, mimetype='application/json')
                else:
                    logger.error("Health check failed")
                    return Response(response='\n', status=500, mimetype='application/json')
            except Exception as e:
                logger.error(f"Health check error: {str(e)}")
                return Response(response='\n', status=500, mimetype='application/json')

        # Inference endpoint
        @self.app.route("/invocations", methods=["POST"])
        def invocations():
            try:
                if not request.is_json:
                    return Response(response='This predictor only supports JSON data',
                                  status=415,
                                  mimetype='text/plain')
                
                data = request.get_json()
                message = data.get('message', '')
                
                if not message:
                    return Response(response=json.dumps({"error": "No message provided"}),
                                  status=400,
                                  mimetype='application/json')
                
                response = self.bot.generate_response(message)
                return Response(response=json.dumps({"response": response}),
                              status=200,
                              mimetype='application/json')
                
            except Exception as e:
                logger.error(f"Inference error: {str(e)}")
                return Response(response=json.dumps({"error": str(e)}),
                              status=500,
                              mimetype='application/json')
    
    def check_system_health(self):
        """Check if system and model are healthy"""
        try:
            # Check if model is loaded
            if self.bot and not hasattr(self.bot, 'model'):
                logger.error("Model not loaded")
                return False
            
            # Check memory usage
            mem = psutil.virtual_memory()
            if mem.percent > 90:
                logger.error(f"High memory usage: {mem.percent}%")
                return False
            
            # Check CPU usage
            if psutil.cpu_percent() > 95:
                logger.error(f"High CPU usage: {psutil.cpu_percent()}%")
                return False
            
            # Log current resource usage
            logger.info(f"System health: Memory {mem.percent}%, CPU {psutil.cpu_percent()}%")
            return True
            
        except Exception as e:
            logger.error(f"Health check error: {str(e)}")
            return False
    
    def run(self):
        """Run the health check server"""
        logger.info("Starting health check server on port 8080...")
        serve(self.app, host='0.0.0.0', port=8080)

class CustomerSupportBot:
    def __init__(self, model_path="models/customer_support_gpt"):
        """
        Initialize the customer support bot with the fine-tuned model.
        
        Args:
            model_path (str): Path to the saved model and tokenizer
        """
        self.process = psutil.Process(os.getpid())
        self.model_path = model_path
        self.model_file_path = os.path.join(self.model_path, "model.tar.gz")
        self.s3 = boto3.client("s3")
        self.model_key = "models/model.tar.gz"
        self.bucket_name = "customer-support-gpt"
        
        # Download and load the model
        self.download_and_load_model()

    def download_and_load_model(self):
        # Check if the model directory exists
        if not os.path.exists(self.model_path):
            os.makedirs(self.model_path)

        # Download model.tar.gz from S3 if not already downloaded
        if not os.path.exists(self.model_file_path):
            print("Downloading model from S3...")
            self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path)
            print("Download complete. Extracting model files...")

            # Extract the model files
            with tarfile.open(self.model_file_path, "r:gz") as tar:
                tar.extractall(self.model_path)

        # Load the model and tokenizer from extracted files
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_path)
        print("Model and tokenizer loaded successfully.")

        # Move model to GPU if available
        self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
        self.model = self.model.to(self.device)

        print(f'Model loaded on device: {self.device}')

    def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
        try:
            input_text = f"Instruction: {message}\nResponse:"
            
            # Tokenize input text
            inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
            
            # Generate response using the model
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_length=max_length,
                    temperature=temperature,
                    num_return_sequences=1,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id,
                    do_sample=True,
                    top_p=0.95,
                    top_k=50
                )
            
            # Decode and format the response
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            response = response.split("Response:")[-1].strip()
            return response
        except Exception as e:
            return f"An error occurred: {str(e)}"

    def monitor_resources(self) -> dict:
        usage = {
            "CPU (%)": self.process.cpu_percent(interval=1),
            "RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
        }
        return usage


def create_chat_interface():
    bot = CustomerSupportBot(model_path="/app/models")
    
    # Start health check server
    health_server = HealthCheckServer(bot)
    health_thread = threading.Thread(target=health_server.run, daemon=True)
    health_thread.start()

    # Function to run initial query
    def initial_query():
        welcome_message = "Hello! I'm your customer support assistant. How can I help you today?"
        return "", [(None, welcome_message)]
    
    def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
        if not message:
            return "", history
        
        bot_response = bot.generate_response(message)
        
        # Log resource usage
        usage = bot.monitor_resources()
        print("Resource Usage:", usage)
        
        history.append((message, bot_response))
        return "", history

    # Create the Gradio interface with custom CSS
    with gr.Blocks(css="""
        .message-box {
            margin-bottom: 10px;
        }
        .button-row {
            display: flex;
            gap: 10px;
            margin-top: 10px;
        }
    """) as interface:
        gr.Markdown("# Customer Support Chatbot")
        gr.Markdown("Welcome! How can I assist you today?")
        
        chatbot = gr.Chatbot(
            label="Chat History",
            height=500,
            elem_classes="message-box",
            # type="messages"
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="Your Message",
                placeholder="Type your message here...",
                lines=2,
                elem_classes="message-box"
            )
        
        with gr.Row(elem_classes="button-row"):
            submit = gr.Button("Send Message", variant="primary")
            clear = gr.ClearButton([msg, chatbot], value="Clear Chat")

        # Add example queries in a separate row
        with gr.Row():
            gr.Examples(
                examples=[
                    "How do I reset my password?",
                    "What are your shipping policies?",
                    "I want to return a product.",
                    "How can I track my order?",
                    "What payment methods do you accept?"
                ],
                inputs=msg,
                label="Example Questions"
            )

        # Set up event handlers
        submit_click = submit.click(
            predict,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        )
        
        msg.submit(
            predict,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        )
        
        # Add keyboard shortcut for submit
        msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])

        print("Interface created successfully.")

        # call the initial query function
        # run a query first how are you and predict the output
        print(predict("How are you", []))

        # run a command which checks the resource usage
        print(f'Bot Resource Usage : {bot.monitor_resources()}')

        # show full system usage
        print(f'CPU Percentage : {psutil.cpu_percent()}')
        print(f'RAM Usage : {psutil.virtual_memory()}')
        print(f'Swap Memory : {psutil.swap_memory()}')

    return interface

if __name__ == "__main__":
    demo = create_chat_interface()
    print("Starting Gradio server...")
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,  # Changed to 7860 for Gradio
        debug=True,
        inline=False
    )