Customer-Support-Chatbot / local_app.py
VenkateshRoshan
deployment file update
b1d9c58
import json # Add this import
import psutil
import torch
import boto3
from transformers import AutoTokenizer
import gradio as gr
import os
from typing import List, Tuple
class CustomerSupportBot:
def __init__(self, endpoint_name="customer-support-gpt-2024-11-10-00-30-03-555"):
self.process = psutil.Process(os.getpid())
model_name = "EleutherAI/gpt-neo-125M"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# self.tokenizer = AutoTokenizer.from_pretrained("gpt2") # Use the tokenizer appropriate to your model
self.endpoint_name = endpoint_name
self.sagemaker_runtime = boto3.client('runtime.sagemaker')
def generate_response(self, message: str) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Prepare payload for SageMaker endpoint
payload = {
# "inputs": inputs['input_ids'].tolist()[0],
'inputs': input_text,
# You can include other parameters if needed (e.g., attention_mask)
}
print(f'Payload: {payload}')
# Convert the payload to a JSON string before sending
json_payload = json.dumps(payload) # Use json.dumps() to serialize the payload
print(f'JSON Payload: {json_payload}')
# Call the SageMaker endpoint for inference
response = self.sagemaker_runtime.invoke_endpoint(
EndpointName=self.endpoint_name,
ContentType='application/json',
Body=json_payload # Send the JSON string here
)
print(f'Response: {response}')
# Process the response
result = response['Body'].read().decode('utf-8')
parsed_result = json.loads(result)
# Extract the generated text from the first element in the list
generated_text = parsed_result[0]['generated_text']
# Split the string to get the response part after 'Response:'
response = generated_text.split('Response:')[1].strip()
# return the extracted response
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot()
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
return interface
if __name__ == "__main__":
demo = create_chat_interface()
demo.launch(
share=True,
server_name="0.0.0.0", # Makes the server accessible from other machines
server_port=7860, # Specify the port
debug=True
)