Spaces:
Running
Running
File size: 5,469 Bytes
1e8f87a 7590eeb b446066 7590eeb b446066 7590eeb b446066 7590eeb b446066 7590eeb b446066 7590eeb b446066 7590eeb 1e8f87a 37e4067 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import sys
import time
import tempfile
import hashlib
import asyncio
import autopep8
from functools import lru_cache
from multiprocessing import Pool
from tenacity import retry, stop_after_attempt, wait_exponential
import huggingface_hub
import transformers
import gradio as gr
from huggingface_hub import HfFolder
# Caching Generated Code
code_cache = {}
def generate_code(idea):
idea_hash = hashlib.md5(idea.encode()).hexdigest()
if idea_hash in code_cache:
return code_cache[idea_hash]
code = gemmacode.generate(idea)
code_cache[idea_hash] = code
return code
# Parallel Processing
def generate_code_parallel(ideas):
with Pool() as pool:
return pool.map(gemmacode.generate, ideas)
# Asynchronous Code Generation
async def generate_code_async(idea):
return await gemmacode.generate_async(idea)
# Batching Requests
def batch_generate(ideas, batch_size=10):
for i in range(0, len(ideas), batch_size):
batch = ideas[i:i+batch_size]
yield gemmacode.generate_batch(batch)
# Progressive Code Generation
def generate_progressive(idea):
for partial_code in gemmacode.generate_stream(idea):
yield partial_code
# Process or display partial_code
# Optimizing Model Loading
model = None
def get_model():
global model
if model is None:
model = gemmacode.load_model()
return model
def generate_code_optimized(idea):
return get_model().generate(idea)
# Error Handling and Retries
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def generate_code_with_retry(idea):
return gemmacode.generate(idea)
# Code Optimization Post-Generation
def optimize_generated_code(code):
return autopep8.fix_code(code)
# Lazy Evaluation
@lru_cache(maxsize=None)
def lazy_generate_code(idea):
return gemmacode.generate(idea)
async def main():
try:
# Get the user's idea
idea = input("What is your idea for an application? ")
except EOFError:
print("No input received. Exiting the program.")
return
# Generate the code for the application using optimized methods
code = await generate_code_async(idea)
code = optimize_generated_code(code)
# Test the code
try:
transformers.pipeline("text-generation")(code)
except Exception as e:
print("The code failed to run:", e)
return
# Ensure the functionality of the application
try:
gr.Interface(fn=transformers.pipeline("text-generation"), inputs=gr.Textbox(), outputs=gr.Textbox()).launch()
except Exception as e:
print("The application failed to run:", e)
return
# Provide an embedded webapp demo of the user's idea implementation
try:
hf_folder = HfFolder(path=tempfile.mkdtemp())
hf_folder.save(code)
hf_folder.push_to_hub(repo_id="acecalisto3/gemmacode-demo", commit_message="Initial commit")
print(f"The demo is available at: https://huggingface.co/acecalisto3/gemmacode-demo")
except Exception as e:
print("The demo failed to launch:", e)
return
# Offer the option to rebuild or deploy
while True:
try:
choice = input("Do you want to rebuild or deploy the application? (r/d/q) ")
except EOFError:
print("No input received. Exiting the program.")
return
if choice == "r":
# Rebuild the code using optimized methods
code = await generate_code_async(idea)
code = optimize_generated_code(code)
# Test the code
try:
transformers.pipeline("text-generation")(code)
except Exception as e:
print("The code failed to run:", e)
return
# Ensure the functionality of the application
try:
gr.Interface(fn=transformers.pipeline("text-generation"), inputs=gr.Textbox(), outputs=gr.Textbox()).launch()
except Exception as e:
print("The application failed to run:", e)
return
# Provide an embedded webapp demo of the user's idea implementation
try:
hf_folder = HfFolder(path=tempfile.mkdtemp())
hf_folder.save(code)
hf_folder.push_to_hub(repo_id="acecalisto3/gemmacode-demo", commit_message="Initial commit")
print(f"The demo is available at: https://huggingface.co/acecalisto3/gemmacode-demo")
except Exception as e:
print("The demo failed to launch:", e)
return
elif choice == "d":
# Deploy the application
try:
api_token = os.environ["HF_TOKEN"]
hub = huggingface_hub.HfApi(api_token=api_token)
hub.create_repo(name="my-app", organization="my-org")
hf_folder = HfFolder(path=tempfile.mkdtemp())
hf_folder.save(code)
hf_folder.push_to_hub(repo_id="my-org/my-app", commit_message="Initial commit")
print("The application has been deployed to: https://huggingface.co/my-org/my-app")
except Exception as e:
print("The application failed to deploy:", e)
return
elif choice == "q":
break
else:
print("Invalid choice")
if __name__ == "__main__":
asyncio.run(main())
|