0shotTest / app.py
acecalisto3's picture
Update app.py
4c266dd verified
raw
history blame
15.5 kB
import streamlit as st
from streamlit_ace import st_ace
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
import os
import subprocess
import black
from pylint import lint
from io import StringIO
import sys
import torch
from huggingface_hub import hf_hub_url, cached_download, HfApi
import re
from typing import List, Dict
from streamlit_jupyter import StreamlitPatcher, tqdm
# This line should be at the top of your script
StreamlitPatcher().jupyter() # This patches Streamlit to work in Jupyter
# Access Hugging Face API key from secrets
hf_token = st.secrets["hf_token"]
if not hf_token:
st.error("Hugging Face API key not found. Please make sure it is set in the secrets.")
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/0shotTest"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
AVAILABLE_CODE_GENERATIVE_MODELS = ["bigcode/starcoder", "Salesforce/codegen-350M-mono", "microsoft/CodeGPT-small"]
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
# AI Guide Toggle
ai_guide_level = st.sidebar.radio("AI Guide Level", ["Full Assistance", "Partial Assistance", "No Assistance"])
class TextGenerationTool:
def __init__(self, llm: str):
self.llm = llm
self.tokenizer = AutoTokenizer.from_pretrained(llm)
self.model = AutoModelForCausalLM.from_pretrained(llm)
def generate_text(self, prompt: str, max_length: int = 50) -> str:
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=max_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class AIAgent:
def __init__(self, name: str, description: str, skills: List[str], llm: str):
self.name = name
self.description = description
self.skills = skills
self.text_gen_tool = TextGenerationTool(llm)
self._hf_api = HfApi() # Initialize HfApi here
def generate_agent_response(self, prompt: str) -> str:
return self.text_gen_tool.generate_text(prompt)
def create_agent_prompt(self) -> str:
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict],
project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]:
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
def deploy_built_space_to_hf(self, project_name: str) -> str:
space_content = generate_space_content(project_name)
repository = self._hf_api.create_repo(
repo_id=project_name,
private=True,
token=hf_token,
exist_ok=True,
space_sdk="streamlit"
)
self._hf_api.upload_file(
path_or_fileobj=space_content,
path_in_repo="app.py",
repo_id=project_name,
repo_type="space",
token=hf_token
)
return repository.name
def has_valid_hf_token(self) -> bool:
return self._hf_api.whoami(token=hf_token) is not None
def process_input(input_text: str) -> str:
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True)
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
return response
def run_code(code: str) -> str:
try:
result = subprocess.run(code, shell=True, capture_output=True, text=True)
return result.stdout
except Exception as e:
return str(e)
def workspace_interface(project_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {'files': []}
return f"Project '{project_name}' created successfully."
else:
return f"Project '{project_name}' already exists."
def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project '{project_name}' does not exist."
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]['files'].append(file_name)
return f"Code added to '{file_name}' in project '{project_name}'."
def display_chat_history(chat_history: List[tuple[str, str]]) -> str:
return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str:
return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
def generate_space_content(project_name: str) -> str:
# Logic to generate the Streamlit app content based on project_name
# ... (This is where you'll need to implement the actual code generation)
return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')"
# Function to display the AI Guide chat
def display_ai_guide_chat(chat_history: List[tuple[str, str]]):
st.markdown("<div class='chat-history'>", unsafe_allow_html=True)
for user_message, agent_message in chat_history:
st.markdown(f"<div class='chat-message user'>{user_message}</div>", unsafe_allow_html=True)
st.markdown(f"<div class='chat-message agent'>{agent_message}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Load the CodeGPT tokenizer explicitly
code_generator_tokenizer = AutoTokenizer.from_pretrained("microsoft/CodeGPT-small-py", clean_up_tokenization_spaces=True)
# Load the CodeGPT model for code completion
code_generator = pipeline("text-generation", model="microsoft/CodeGPT-small-py", tokenizer=code_generator_tokenizer)
def analyze_code(code: str) -> List[str]:
hints = []
# Example pointer: Suggest using list comprehensions
if re.search(r'for .* in .*:\n\s+.*\.append\(', code):
hints.append("Consider using a list comprehension instead of a loop for appending to a list.")
# Example pointer: Recommend using f-strings for string formatting
if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code):
hints.append("Consider using f-strings for cleaner and more efficient string formatting.")
# Example pointer: Avoid using global variables
if re.search(r'\bglobal\b', code):
hints.append("Avoid using global variables. Consider passing parameters or using classes.")
# Example pointer: Recommend using `with` statement for file operations
if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code):
hints.append("Consider using the `with` statement when opening files to ensure proper resource management.")
return hints
def get_code_completion(prompt: str) -> str:
# Generate code completion based on the current code input
# Use max_new_tokens instead of max_length
completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1)
return completions[0]['generated_text']
def lint_code(code: str) -> List[str]:
# Capture pylint output
pylint_output = StringIO()
sys.stdout = pylint_output
# Run pylint on the provided code
pylint.lint.Run(['--from-stdin'], do_exit=False, input=code)
# Reset stdout
sys.stdout = sys.__stdout__
# Extract pylint messages
messages = pylint_output.getvalue().splitlines()
return messages
def format_code(code: str) -> str:
# Format code using Black
formatted_code = black.format_str(code, mode=black.FileMode())
return formatted_code
def main():
st.title("Streamlit Workspace")
# Load agents from the agent directory
agent_files = [f for f in os.listdir(AGENT_DIRECTORY) if f.endswith(".py")]
for agent_file in agent_files:
agent_module = __import__(f"{AGENT_DIRECTORY}.{os.path.splitext(agent_file)[0]}")
agent_class = getattr(agent_module, os.path.splitext(agent_file)[0])
agent_instance = agent_class()
st.session_state.available_agents.append(agent_instance)
# Display the available agents
st.subheader("Available Agents")
for agent in st.session_state.available_agents:
st.write(f"**{agent.name}**: {agent.description}")
# Select an agent
selected_agent = st.selectbox("Select an Agent", [agent.name for agent in st.session_state.available_agents])
current_agent = next((agent for agent in st.session_state.available_agents if agent.name == selected_agent), None)
# Display the agent's prompt
if current_agent:
st.subheader(f"{current_agent.name} Prompt")
st.write(current_agent.create_agent_prompt())
# Workspace Tab
st.subheader("Workspace")
workspace_tabs = st.tabs(["Chat", "Tool Box", "Projects"])
with workspace_tabs[0]:
# Chat Tab
st.subheader("Chat with your Agent")
user_input = st.text_input("Enter your message:")
if user_input:
st.session_state.chat_history.append((user_input, current_agent.generate_agent_response(user_input)))
user_input = "" # Clear the input field
# Display chat history
st.markdown(display_chat_history(st.session_state.chat_history))
# AI Guide
if ai_guide_level != "No Assistance":
st.subheader("AI Guide")
guide_chat_history = []
if ai_guide_level == "Full Assistance":
guide_chat_history.append((
"I'm building a Streamlit app to display data from a CSV file.",
"Great! Let's start by creating a new project in the workspace."
))
guide_chat_history.append((
"Create a new project called 'data_app'.",
"Okay, I've created the project 'data_app'. What would you like to name the main file?"
))
guide_chat_history.append((
"Name it 'app.py'.",
"Alright, I've added an empty 'app.py' file to the 'data_app' project. Now, let's add some code to read the CSV file."
))
guide_chat_history.append((
"Add the following code to 'app.py':\n```python\nimport pandas as pd\nimport streamlit as st\n\ndata = pd.read_csv('data.csv')\nst.write(data)\n```",
"Excellent! Now you can run this code to see the data from your CSV file in the Streamlit app."
))
elif ai_guide_level == "Partial Assistance":
guide_chat_history.append((
"How can I read data from a CSV file in Streamlit?",
"You can use the `pandas` library to read the CSV file and then use `streamlit.write()` to display it."
))
display_ai_guide_chat(guide_chat_history)
with workspace_tabs[1]:
# Tool Box Tab
st.subheader("Tool Box")
tool_tabs = st.tabs(["Code Editor", "Terminal", "Code Analysis"])
with tool_tabs[0]:
# Code Editor Tab
st.subheader("Code Editor")
code_editor = st_ace(
placeholder="Write your code here...",
height=300,
theme="monokai",
key="code_editor",
language="python",
auto_update=True
)
st.button("Run Code", on_click=lambda: st.write(run_code(code_editor)))
# Code Completion
st.subheader("Code Completion")
completion_prompt = st.text_area("Enter code for completion:")
if completion_prompt:
completed_code = get_code_completion(completion_prompt)
st.write(f"**Completion:** {completed_code}")
with tool_tabs[1]:
# Terminal Tab
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if terminal_input:
st.session_state.terminal_history.append(terminal_input)
st.write(run_code(terminal_input))
terminal_input = "" # Clear the input field
# Display terminal history
st.markdown("\n".join(st.session_state.terminal_history))
with tool_tabs[2]:
# Code Analysis Tab
st.subheader("Code Analysis")
code_to_analyze = st.text_area("Enter code to analyze:")
if code_to_analyze:
# Analyze code
analysis_results = analyze_code(code_to_analyze)
if analysis_results:
st.write("**Code Analysis Results:**")
for hint in analysis_results:
st.write(f"- {hint}")
else:
st.write("No code analysis suggestions found.")
# Lint code
lint_results = lint_code(code_to_analyze)
if lint_results:
st.write("**Linting Results:**")
for message in lint_results:
st.write(f"- {message}")
else:
st.write("No linting issues found.")
# Format code
formatted_code = format_code(code_to_analyze)
st.write("**Formatted Code:**")
st.code(formatted_code, language="python")
with workspace_tabs[2]:
# Projects Tab
st.subheader("Projects")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
st.write(workspace_interface(project_name))
# Display existing projects
st.markdown(display_workspace_projects(st.session_state.workspace_projects))
# Add code to a project
selected_project = st.selectbox("Select a project", list(st.session_state.workspace_projects.keys()))
code_to_add = st.text_area("Enter code to add:")
file_name = st.text_input("Enter file name:")
if st.button("Add Code"):
st.write(add_code_to_workspace(selected_project, code_to_add, file_name))
if __name__ == "__main__":
main()