File size: 7,162 Bytes
5538e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208c5b6
5538e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from textblob import TextBlob
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import networkx as nx
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy import linalg
import plotly.graph_objects as go
from collections import Counter
import warnings
import transformers
import gradio as gr
import streamlit as st

warnings.filterwarnings("ignore")

# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Function to fetch HTML content from GitHub issue pages
def fetch_issue_data(username, repository, start_page, end_page):
    issues_data = []
    for page in range(start_page, end_page + 1):
        url = f"https://github.com/{username}/{repository}/issues?page={page}"
        response = requests.get(url)
        soup = BeautifulSoup(response.content, 'html.parser')
        issue_elements = soup.find_all('div', class_='flex-shrink-0')
        for issue_element in issue_elements:
            issue_link = issue_element.find('a', class_='Link--primary')['href']
            issue_url = f"https://github.com{issue_link}"
            issue_data = fetch_issue_details(issue_url)
            issues_data.append(issue_data)
    return issues_data

# Function to fetch details of a specific issue
def fetch_issue_details(issue_url):
    response = requests.get(issue_url)
    soup = BeautifulSoup(response.content, 'html.parser')
    issue_title = soup.find('h1', class_='gh-header-title').text.strip()
    issue_body = soup.find('div', class_='markdown-body').text.strip()
    issue_created_at = soup.find('relative-time')['datetime']
    issue_closed_at = soup.find('relative-time', class_='no-wrap')
    if issue_closed_at:
        issue_closed_at = issue_closed_at['datetime']
    else:
        issue_closed_at = None
    issue_author = soup.find('a', class_='author').text.strip()
    issue_assignee = soup.find('a', class_='Link--muted')
    if issue_assignee:
        issue_assignee = issue_assignee.text.strip()
    else:
        issue_assignee = None
    return {
        'title': issue_title,
        'body': issue_body,
        'created_at': issue_created_at,
        'closed_at': issue_closed_at,
        'author': issue_author,
        'assignee': issue_assignee
    }

# Function to clean and structure the data
def clean_and_structure_data(issues_data):
    df = pd.DataFrame(issues_data)
    if 'created_at' in df.columns:
        df['created_at'] = pd.to_datetime(df['created_at'])
    else:
        logging.error("The 'created_at' column is missing from the dataframe.")
        df['created_at'] = pd.NaT
    if 'closed_at' in df.columns:
        df['closed_at'] = pd.to_datetime(df['closed_at'])
    else:
        df['closed_at'] = None
    df['resolution_time'] = (df['closed_at'] - df['created_at']).dt.days
    df['resolution_time'] = df['resolution_time'].fillna(-1)
    df['is_closed'] = (df['closed_at'].notna()).astype(int)
    return df

# Function for exploratory data analysis (EDA)
def perform_eda(df):
    # Descriptive statistics
    st.write(df.describe())

    # Visualizations
    sns.histplot(df['resolution_time'], kde=True)
    st.pyplot(plt)
    sns.lineplot(x=df['created_at'].dt.month, y='resolution_time', data=df)
    st.pyplot(plt)
    top_authors = df['author'].value_counts().nlargest(10)
    st.write("\nTop 10 Authors:")
    st.write(top_authors)
    top_assignees = df['assignee'].value_counts().nlargest(10)
    st.write("\nTop 10 Assignees:")
    st.write(top_assignees)

# Function for text analysis using NLP
def analyze_text_content(df):
    # Text preprocessing
    stop_words = set(stopwords.words('english'))
    lemmatizer = WordNetLemmatizer()
    df['processed_body'] = df['body'].apply(lambda text: ' '.join([lemmatizer.lemmatize(word) for word in word_tokenize(text) if word.lower() not in stop_words]))

    # Topic modeling
    dictionary = Dictionary([word_tokenize(text) for text in df['processed_body']])
    corpus = [dictionary.doc2bow(word_tokenize(text)) for text in df['processed_body']]
    lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary)
    st.write("Top 5 Topics:")
    for topic in lda_model.print_topics(num_words=5):
        st.write(topic)

    # Sentiment analysis
    analyzer = SentimentIntensityAnalyzer()
    df['sentiment'] = df['body'].apply(lambda text: analyzer.polarity_scores(text)['compound'])
    st.write("Sentiment Analysis:")
    st.write(df['sentiment'].describe())

    # Word Cloud for Common Words
    from wordcloud import WordCloud
    all_words = ' '.join([text for text in df['processed_body']])
    wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_words)
    st.pyplot(plt.figure(figsize=(10, 6), facecolor=None))
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.tight_layout(pad=0)
    plt.show()

# Function to create a network graph of issues, authors, and assignees
def create_network_graph(df):
    graph = nx.Graph()
    for index, row in df.iterrows():
        graph.add_node(row['title'], type='issue')
        graph.add_node(row['author'], type='author')
        if row['assignee']:
            graph.add_node(row['assignee'], type='assignee')
        graph.add_edge(row['title'], row['author'])
        if row['assignee']:
            graph.add_edge(row['title'], row['assignee'])

    ...
    # Interactive Network Graph with Plotly
    pos = nx.spring_layout(graph, k=0.5)
    edge_x = []
    edge_y = []
    for edge in graph.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.append([x0, x1, None])
        edge_y.append([y0, y1, None])

    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines'
    )

    node_x = []
    node_y = []
    for node in graph.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)

    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        mode='markers',
        marker=dict(
            color=[],
            size=10,
            line=dict(width=2, color='black')
        ),
        text=[],
        hoverinfo='text'
    )

    # Set node colors based on type
    node_colors = []
    for node in graph.nodes():
        if graph.nodes[node]['type'] == 'issue':
            node_colors.append('red')
        elif graph.nodes[node]['type'] == 'author':
            node_colors.append('blue')