AiAi0 / app.py
acecalisto3's picture
Update app.py
7c64b2d verified
raw
history blame
7.16 kB
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from textblob import TextBlob
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import networkx as nx
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy import linalg
import plotly.graph_objects as go
from collections import Counter
import warnings
import transformers
import gradio as gr
import streamlit as st
warnings.filterwarnings("ignore")
# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Function to fetch HTML content from GitHub issue pages
def fetch_issue_data(username, repository, start_page, end_page):
issues_data = []
for page in range(start_page, end_page + 1):
url = f"https://github.com/{username}/{repository}/issues?page={page}"
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
issue_elements = soup.find_all('div', class_='flex-shrink-0')
for issue_element in issue_elements:
issue_link = issue_element.find('a', class_='Link--primary')['href']
issue_url = f"https://github.com{issue_link}"
issue_data = fetch_issue_details(issue_url)
issues_data.append(issue_data)
return issues_data
# Function to fetch details of a specific issue
def fetch_issue_details(issue_url):
response = requests.get(issue_url)
soup = BeautifulSoup(response.content, 'html.parser')
issue_title = soup.find('h1', class_='gh-header-title').text.strip()
issue_body = soup.find('div', class_='markdown-body').text.strip()
issue_created_at = soup.find('relative-time')['datetime']
issue_closed_at = soup.find('relative-time', class_='no-wrap')
if issue_closed_at:
issue_closed_at = issue_closed_at['datetime']
else:
issue_closed_at = None
issue_author = soup.find('a', class_='author').text.strip()
issue_assignee = soup.find('a', class_='Link--muted')
if issue_assignee:
issue_assignee = issue_assignee.text.strip()
else:
issue_assignee = None
return {
'title': issue_title,
'body': issue_body,
'created_at': issue_created_at,
'closed_at': issue_closed_at,
'author': issue_author,
'assignee': issue_assignee
}
# Function to clean and structure the data
def clean_and_structure_data(issues_data):
df = pd.DataFrame(issues_data)
if 'created_at' in df.columns:
df['created_at'] = pd.to_datetime(df['created_at'])
else:
logging.error("The 'created_at' column is missing from the dataframe.")
df['created_at'] = pd.NaT
if 'closed_at' in df.columns:
df['closed_at'] = pd.to_datetime(df['closed_at'])
else:
df['closed_at'] = None
df['resolution_time'] = (df['closed_at'] - df['created_at']).dt.days
df['resolution_time'] = df['resolution_time'].fillna(-1)
df['is_closed'] = (df['closed_at'].notna()).astype(int)
return df
# Function for exploratory data analysis (EDA)
def perform_eda(df):
# Descriptive statistics
st.write(df.describe())
# Visualizations
sns.histplot(df['resolution_time'], kde=True)
st.pyplot(plt)
sns.lineplot(x=df['created_at'].dt.month, y='resolution_time', data=df)
st.pyplot(plt)
top_authors = df['author'].value_counts().nlargest(10)
st.write("\nTop 10 Authors:")
st.write(top_authors)
top_assignees = df['assignee'].value_counts().nlargest(10)
st.write("\nTop 10 Assignees:")
st.write(top_assignees)
# Function for text analysis using NLP
def analyze_text_content(df):
# Text preprocessing
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
df['processed_body'] = df['body'].apply(lambda text: ' '.join([lemmatizer.lemmatize(word) for word in word_tokenize(text) if word.lower() not in stop_words]))
# Topic modeling
dictionary = Dictionary([word_tokenize(text) for text in df['processed_body']])
corpus = [dictionary.doc2bow(word_tokenize(text)) for text in df['processed_body']]
lda_model = LdaModel(corpus, num_topics=5, id2word=dictionary)
st.write("Top 5 Topics:")
for topic in lda_model.print_topics(num_words=5):
st.write(topic)
# Sentiment analysis
analyzer = SentimentIntensityAnalyzer()
df['sentiment'] = df['body'].apply(lambda text: analyzer.polarity_scores(text)['compound'])
st.write("Sentiment Analysis:")
st.write(df['sentiment'].describe())
# Word Cloud for Common Words
from wordcloud import WordCloud
all_words = ' '.join([text for text in df['processed_body']])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_words)
st.pyplot(plt.figure(figsize=(10, 6), facecolor=None))
plt.imshow(wordcloud)
plt.axis("off")
plt.tight_layout(pad=0)
plt.show()
# Function to create a network graph of issues, authors, and assignees
def create_network_graph(df):
graph = nx.Graph()
for index, row in df.iterrows():
graph.add_node(row['title'], type='issue')
graph.add_node(row['author'], type='author')
if row['assignee']:
graph.add_node(row['assignee'], type='assignee')
graph.add_edge(row['title'], row['author'])
if row['assignee']:
graph.add_edge(row['title'], row['assignee'])
...
# Interactive Network Graph with Plotly
pos = nx.spring_layout(graph, k=0.5)
edge_x = []
edge_y = []
for edge in graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.append([x0, x1, None])
edge_y.append([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode='markers',
marker=dict(
color=[],
size=10,
line=dict(width=2, color='black')
),
text=[],
hoverinfo='text'
)
# Set node colors based on type
node_colors = []
for node in graph.nodes():
if graph.nodes[node]['type'] == 'issue':
node_colors.append('red')
elif graph.nodes[node]['type'] == 'author':
node_colors.append('blue')