Spaces:
Runtime error
Runtime error
File size: 49,254 Bytes
bcc7de3 df717a9 7321c1c bcc7de3 7321c1c bcc7de3 7321c1c bcc7de3 7321c1c bcc7de3 14d749b 03fef6f bcc7de3 03fef6f bcc7de3 d409826 af0b7b3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 377311e bcc7de3 377311e ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 ef088bc bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 bcc7de3 ac4d529 d3cfd6f ac4d529 6e96ed2 d3cfd6f ac4d529 d3cfd6f ac4d529 d3cfd6f ac4d529 d3cfd6f 1b6f9d3 ac4d529 03fef6f 7321c1c df717a9 7321c1c df717a9 972bb7b e98b8b3 7321c1c e98b8b3 726b8a1 d45cc49 7321c1c d45cc49 7321c1c d45cc49 ac4d529 5e77441 ac4d529 e220a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 |
limport datetimeimport osimport csvimport timeimport hashlibimport loggingfrom collections import defaultdictimport mysql.connectorimport threadingfrom urllib.parse import urlparseimport gradio as grfrom selenium import webdriverfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as
ECfrom selenium.common.exceptions import NoSuchElementException, StaleElementReferenceException, TimeoutExceptionfrom selenium.webdriver.chrome.service
import Servicefrom selenium.webdriver.chrome.options import Optionsfrom webdriver_manager.chrome import ChromeDriverManager
from huggingface_hub import InferenceClient, loginfrom transformers import AutoTokenizer, AutoModelForCausalLM, pipelineimport randomimport yamlimport torchimport pandas as pdimport xml.etree.ElementTree as ETimport reimport spacyimport unittestfrom dotenv import load_dotenvimport nltk# Initialize NLTK resources (you may need to download these)
nltk.download('punkt')nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('words')
# Load spaCy model
nlp = spacy.load("en_core_web_sm")
# Dictionary to store model loading functions
model_loaders = {
"Falcon": lambda: load_model("tiiuae/falcon-7b"),
"Flan-T5": lambda: load_model("google/flan-t5-xl"),
"Flan-T5-Small": lambda: load_model("google/flan-t5-small") # Add a smaller model
}# Load environment variables from .env file
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")if not HUGGINGFACE_TOKEN:
raise ValueError("HUGGINGFACE_TOKEN is not set in the environment variables.")
login(token=HUGGINGFACE_TOKEN, add_to_git_credential=True)# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)# Define constants
DEFAULT_FILE_PATH = "scraped_data"
PURPOSE = (
"You monitor urls. You log what you observe. You seek any changes on them since your last observation. "
"Anything new gets logged and dumped into csv, stored in your log folder at user/app/scraped_data."
)# Global variables for task management
HISTORY = []
CURRENT_TASK = None
STOP_THREADS = False # Flag to stop scraping threads# Database Pooling Configuration
DB_POOL_NAME = "mypool"
DB_POOL_SIZE = 5 # Adjust based on expected loadtry:
dbconfig = {
"host": os.getenv("DB_HOST"),
"user": os.getenv("DB_USER"),
"password": os.getenv("DB_PASSWORD"),
"database": os.getenv("DB_NAME"),
}
connection_pool = mysql.connector.pooling.MySQLConnectionPool(
pool_name=DB_POOL_NAME,
pool_size=DB_POOL_SIZE,
pool_reset_session=True,
**dbconfig
)
logging.info("Database connection pool created successfully.")except mysql.connector.Error as err:
logging.warning(f"Database connection pool creation failed: {err}")
connection_pool = None # Will use CSV as fallback# Function to get a database connection from the pooldef get_db_connection():
"""
Retrieves a connection from the pool. Returns None if pool is not available.
"""
if connection_pool:
try:
connection = connection_pool.get_connection()
if connection.is_connected():
return connection
except mysql.connector.Error as err:
logging.error(f"Error getting connection from pool: {err}")
return None# Initialize Database: Create tables and indexesdef initialize_database():
"""
Initializes the database by creating necessary tables and indexes if they do not exist.
"""
connection = get_db_connection()
if connection is None:
logging.info("Database initialization skipped. Using CSV storage.")
return
cursor = connection.cursor()
try:
# Create table for scraped data
create_scraped_data_table = """
CREATE TABLE IF NOT EXISTS scraped_data (
id INT AUTO_INCREMENT PRIMARY KEY,
url VARCHAR(255) NOT NULL,
content_hash VARCHAR(64) NOT NULL,
change_detected DATETIME NOT NULL
)
"""
cursor.execute(create_scraped_data_table)
logging.info("Table 'scraped_data' is ready.")
# Create indexes for performance
create_index_url = "CREATE INDEX IF NOT EXISTS idx_url ON scraped_data(url)"
create_index_change = "CREATE INDEX IF NOT EXISTS idx_change_detected ON scraped_data(change_detected)"
cursor.execute(create_index_url)
cursor.execute(create_index_change)
logging.info("Indexes on 'url' and 'change_detected' columns created.")
# Create table for action logs
create_action_logs_table = """
CREATE TABLE IF NOT EXISTS action_logs (
id INT AUTO_INCREMENT PRIMARY KEY,
action VARCHAR(255) NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
cursor.execute(create_action_logs_table)
logging.info("Table 'action_logs' is ready.")
except mysql.connector.Error as err:
logging.error(f"Error initializing database: {err}")
finally:
cursor.close()
connection.close()
logging.info("Database initialization complete.")# Function to create WebDriverdef create_driver(options: Options) -> webdriver.Chrome:
"""
Initializes and returns a Selenium Chrome WebDriver instance.
"""
try:
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=options
)
logging.info("ChromeDriver initialized successfully.")
return driver
except Exception as exception:
logging.error(f"Error initializing ChromeDriver: {exception}")
return None# Function to log changes to CSVdef log_to_csv(storage_location: str, url: str, content_hash: str, change_detected: str):
"""
Logs the change to a CSV file in the storage_location.
"""
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, f"{urlparse(url).hostname}_changes.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["date", "time", "url", "content_hash", "change"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"date": change_detected.split()[0],
"time": change_detected.split()[1],
"url": url,
"content_hash": content_hash,
"change": "Content changed",
}
)
logging.info(f"Change detected at {url} on {change_detected} and logged to CSV.")
except Exception as e:
logging.error(f"Error logging data to CSV: {e}")# Function to get initial observationdef get_initial_observation(
driver: webdriver.Chrome, url: str, content_type: str, selector: str = None) -> str:
"""
Retrieves the initial content from the URL and returns its MD5 hash.
"""
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
initial_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
initial_content = [element.get_attribute("src") for element in elements]
except TimeoutException: logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
initial_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
initial_content = [element.get_attribute("src") for element in elements]
else:
initial_content = driver.page_source
initial_hash = hashlib.md5(str(initial_content).encode("utf-8")).hexdigest()
logging.info(f"Initial hash for {url}: {initial_hash}")
return initial_hash
except Exception as exception:
logging.error(f"Error accessing {url}: {exception}")
return None# Function to monitor URLs for changesdef monitor_urls(
storage_location: str,
urls: list,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None):
"""
Monitors the specified URLs for changes and logs any detected changes to the database or CSV.
"""
global HISTORY, STOP_THREADS
previous_hashes = {url: "" for url in urls}
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
logging.error("WebDriver could not be initialized. Exiting monitor.")
return
try:
while not STOP_THREADS:
for url in urls:
if STOP_THREADS:
break
try:
driver.get(url)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.TAG_NAME, "body")))
time.sleep(2) # Additional wait for dynamic content
if content_type == "text":
current_content = driver.page_source
elif content_type == "media":
if selector:
try:
elements = WebDriverWait(driver, 5).until(
EC.presence_of_all_elements_located((By.CSS_SELECTOR, selector))
)
current_content = [element.get_attribute("src") for element in elements]
except TimeoutException:
logging.warning(f"Timeout waiting for media elements with selector '{selector}' on {url}")
current_content = []
else:
elements = driver.find_elements(By.TAG_NAME, "img")
current_content = [element.get_attribute("src") for element in elements]
else:
current_content = driver.page_source
current_hash = hashlib.md5(str(current_content).encode("utf-8")).hexdigest()
if current_hash != previous_hashes[url]:
previous_hashes[url] = current_hash
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Change detected at {url} on {date_time_str}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, current_hash, date_time_str))
connection.commit()
logging.info(f"Change detected at {url} on {date_time_str} and logged to database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting data into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, current_hash, date_time_str)
# Update progress
if progress:
progress(1)
except (
NoSuchElementException,
StaleElementReferenceException,
TimeoutException,
Exception,
) as e:
logging.error(f"Error accessing {url}: {e}")
if progress:
progress(1)
time.sleep(scrape_interval * 60) # Wait for the next scrape interval
finally:
driver.quit()
logging.info("ChromeDriver session ended.")# Function to start scrapingdef start_scraping(
storage_location: str,
urls: str,
scrape_interval: int,
content_type: str,
selector: str = None,
progress: gr.Progress = None) -> str:
"""
Starts the scraping process in a separate thread with progress indication.
"""
global CURRENT_TASK, HISTORY, STOP_THREADS
if STOP_THREADS:
STOP_THREADS = False # Reset the flag if previously stopped
url_list = [url.strip() for url in urls.split(",") if url.strip()]
CURRENT_TASK = f"Monitoring URLs: {', '.join(url_list)}"
HISTORY.append(f"Task started: {CURRENT_TASK}")
logging.info(f"Task started: {CURRENT_TASK}")
# Initialize database tables
initialize_database()
# Log initial observations
def log_initial_observations():
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
driver = create_driver(options)
if driver is None:
return
for url in url_list:
if STOP_THREADS:
break
try:
initial_hash = get_initial_observation(driver, url, content_type, selector)
if initial_hash:
date_time_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
HISTORY.append(f"Initial observation at {url}: {initial_hash}")
# Attempt to log to database
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO scraped_data (url, content_hash, change_detected)
VALUES (%s, %s, %s)
"""
cursor.execute(insert_query, (url, initial_hash, date_time_str))
connection.commit()
logging.info(f"Initial observation logged for {url} in database.")
except mysql.connector.Error as err:
logging.error(f"Error inserting initial observation into database: {err}")
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
finally:
cursor.close()
connection.close()
else:
# Fallback to CSV
log_to_csv(storage_location, url, initial_hash, date_time_str)
except Exception as e:
HISTORY.append(f"Error accessing {url}: {e}")
logging.error(f"Error accessing {url}: {e}")
driver.quit()
# Start logging initial observations
initial_thread = threading.Thread(target=log_initial_observations, daemon=True)
initial_thread.start()
# Start the monitoring thread with progress
monitor_thread = threading.Thread(
target=monitor_urls,
args=(storage_location, url_list, scrape_interval, content_type, selector, progress),
daemon=True,
)
monitor_thread.start()
logging.info("Started scraping thread.")
return f"Started scraping {', '.join(url_list)} every {scrape_interval} minutes."
# Function to stop scraping
def stop_scraping() -> str:
"""
Stops all ongoing scraping threads.
"""
global STOP_THREADS
STOP_THREADS = True
HISTORY.append("Scraping stopped by user.")
logging.info("Scraping stop signal sent.")
return "Scraping has been stopped."
# Function to display CSV content from MySQL or CSV
def display_csv(storage_location: str, url: str) -> str:
"""
Fetches and returns the scraped data for a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No data available for the selected URL."
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df.to_string(index=False)
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df.to_string(index=False)
else:
return "No data available."
except Exception as e:
logging.error(f"Error fetching data for {url}: {e}")
return f"Error fetching data for {url}: {e}"
# Function to generate RSS feed from MySQL or CSV data
def generate_rss_feed(storage_location: str, url: str) -> str:
"""
Generates an RSS feed for the latest changes detected on a given URL from the MySQL database or CSV.
"""
try:
connection = get_db_connection()
rss_feed = ""
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC LIMIT 10"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {urlparse(url).hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for row in results:
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['change_detected']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
str(row['change_detected']), "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
cursor.close()
connection.close()
return rss_feed
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Generating RSS feed from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path).tail(10)
if df.empty:
return "No changes detected to include in RSS feed."
# Create the root RSS element
rss = ET.Element("rss", version="2.0")
channel = ET.SubElement(rss, "channel")
# Add channel elements
title = ET.SubElement(channel, "title")
title.text = f"RSS Feed for {hostname}"
link = ET.SubElement(channel, "link")
link.text = url
description = ET.SubElement(channel, "description")
description.text = "Recent changes detected on the website."
# Add items to the feed
for _, row in df.iterrows():
item = ET.SubElement(channel, "item")
item_title = ET.SubElement(item, "title")
item_title.text = f"Change detected at {row['url']}"
item_link = ET.SubElement(item, "link")
item_link.text = row["url"]
item_description = ET.SubElement(item, "description")
item_description.text = f"Content changed on {row['date']} at {row['time']}"
pub_date = ET.SubElement(item, "pubDate")
pub_date.text = datetime.datetime.strptime(
f"{row['date']} {row['time']}", "%Y-%m-%d %H:%M:%S"
).strftime("%a, %d %b %Y %H:%M:%S +0000")
# Generate the XML string
rss_feed = ET.tostring(rss, encoding="utf-8", method="xml").decode("utf-8")
return rss_feed
else:
return "No data available."
except Exception as e:
logging.error(f"Error generating RSS feed for {url}: {e}")
return f"Error generating RSS feed for {url}: {e}"
# Function to parse user commands using spaCy
def parse_command(message: str) -> tuple:
"""
Parses the user message using spaCy to identify if it contains a command.
Returns the command and its parameters if found, else (None, None).
"""
doc = nlp(message.lower())
command = None
params = {}
# Define command patterns
if "filter" in message.lower():
# Example: "Filter apples, oranges in column Description"
match = re.search(r"filter\s+([\w\s,]+)\s+in\s+column\s+(\w+)", message, re.IGNORECASE)
if match:
words = [word.strip() for word in match.group(1).split(",")]
column = match.group(2)
command = "filter"
params = {"words": words, "column": column}
elif "sort" in message.lower():
# Example: "Sort Price ascending"
match = re.search(r"sort\s+(\w+)\s+(ascending|descending)", message, re.IGNORECASE)
if match:
column = match.group(1)
order = match.group(2)
command = "sort"
params = {"column": column, "order": order}
elif "export to csv as" in message.lower():
# Example: "Export to CSV as filtered_data.csv"
match = re.search(r"export\s+to\s+csv\s+as\s+([\w\-]+\.csv)", message, re.IGNORECASE)
if match:
filename = match.group(1)
command = "export"
params = {"filename": filename}
elif "log action" in message.lower():
# Example: "Log action Filtered data for specific fruits"
match = re.search(r"log\s+action\s+(.+)", message, re.IGNORECASE)
if match:
action = match.group(1)
command = "log"
params = {"action": action}
return command, params
# Function to execute parsed commands
def execute_command(command: str, params: dict) -> str:
"""
Executes the corresponding function based on the command and parameters.
"""
if command == "filter":
words = params["words"]
column = params["column"]
return filter_data(column, words)
elif command == "sort":
column = params["column"]
order = params["order"]
return sort_data(column, order)
elif command == "export":
filename = params["filename"]
return export_csv(filename)
elif command == "log":
action = params["action"]
return log_action(action)
else:
return "Unknown command."
# Data Manipulation Functions
def filter_data(column: str, words: list) -> str:
"""
Filters the scraped data to include only rows where the specified column contains the given words.
Saves the filtered data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to filter."
df = pd.DataFrame(results)
# Create a regex pattern to match any of the words
pattern = '|'.join(words)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains(pattern, case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = os.path.join(storage_location, f"filtered_data_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Filtering data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to filter."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
filtered_df = df[df[column].astype(str).str.contains('|'.join(words), case=False, na=False)]
if filtered_df.empty:
return f"No records found with words {words} in column '{column}'."
# Save the filtered data to a new CSV
timestamp = int(time.time())
filtered_csv = latest_csv.replace(".csv", f"_filtered_{timestamp}.csv")
filtered_df.to_csv(filtered_csv, index=False)
logging.info(f"Data filtered on column '{column}' for words {words}.")
return f"Data filtered and saved to {filtered_csv}."
except Exception as e:
logging.error(f"Error filtering data: {e}")
return f"Error filtering data: {e}"
def sort_data(column: str, order: str) -> str:
"""
Sorts the scraped data based on the specified column and order.
Saves the sorted data to a new CSV file.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to sort."
df = pd.DataFrame(results)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = os.path.join(storage_location, f"sorted_data_{column}_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except mysql.connector.Error as err:
logging.error(f"Error fetching data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Sorting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to sort."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
if column not in df.columns:
return f"Column '{column}' does not exist in the data."
ascending = True if order.lower() == "ascending" else False
sorted_df = df.sort_values(by=column, ascending=ascending)
# Save the sorted data to a new CSV
timestamp = int(time.time())
sorted_csv = latest_csv.replace(".csv", f"_sorted_{order.lower()}_{timestamp}.csv")
sorted_df.to_csv(sorted_csv, index=False)
logging.info(f"Data sorted on column '{column}' in {order} order.")
return f"Data sorted and saved to {sorted_csv}."
except Exception as e:
logging.error(f"Error sorting data: {e}")
return f"Error sorting data: {e}"
def export_csv(filename: str) -> str:
"""
Exports the latest scraped data to a specified CSV filename.
"""
try:
storage_location = DEFAULT_FILE_PATH
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
# Fetch all data
query = "SELECT * FROM scraped_data"
cursor.execute(query)
results = cursor.fetchall()
if not results:
return "No data available to export."
df = pd.DataFrame(results)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except mysql.connector.Error as err:
logging.error(f"Error exporting data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Exporting data from CSV.")
# Fallback to CSV
csv_files = [f for f in os.listdir(storage_location) if f.endswith("_changes.csv") or f.endswith("_filtered.csv") or f.endswith("_sorted_asc.csv") or f.endswith("_sorted_desc.csv")]
if not csv_files:
return "No CSV files found to export."
# Assume the latest CSV is the target
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
df = pd.read_csv(latest_csv)
export_path = os.path.join(storage_location, filename)
df.to_csv(export_path, index=False)
logging.info(f"Data exported to {export_path}.")
return f"Data exported to {export_path}."
except Exception as e:
logging.error(f"Error exporting CSV: {e}")
return f"Error exporting CSV: {e}"
def log_action(action: str) -> str:
"""
Logs a custom action message to the MySQL database or CSV.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor()
insert_query = """
INSERT INTO action_logs (action)
VALUES (%s)
"""
cursor.execute(insert_query, (action,))
connection.commit()
logging.info(f"Action logged in database: {action}")
cursor.close()
connection.close()
return f"Action logged: {action}"
except mysql.connector.Error as err:
logging.error(f"Error logging action to database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Logging action to CSV.")
# Fallback to CSV
storage_location = DEFAULT_FILE_PATH
try:
os.makedirs(storage_location, exist_ok=True)
csv_file_path = os.path.join(storage_location, "action_logs.csv")
file_exists = os.path.isfile(csv_file_path)
with open(csv_file_path, "a", newline="", encoding="utf-8") as csvfile:
fieldnames = ["timestamp", "action"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow(
{
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"action": action,
}
)
logging.info(f"Action logged to CSV: {action}")
return f"Action logged: {action}"
except Exception as e:
logging.error(f"Error logging action to CSV: {e}")
return f"Error logging action: {e}"
except Exception as e:
logging.error(f"Error logging action: {e}")
return f"Error logging action: {e}"
# Function to get the latest CSV file based on modification time
def get_latest_csv() -> str:
"""
Retrieves the latest CSV file from the storage directory based on modification time.
"""
try:
storage_location = "/home/users/app/scraped_data"
csv_files = [f for f in os.listdir(storage_location) if f.endswith(".csv")]
if not csv_files:
return None
latest_csv = max([os.path.join(storage_location, f) for f in csv_files], key=os.path.getmtime)
return latest_csv
except Exception as e:
logging.error(f"Error retrieving latest CSV: {e}")
return None
def respond(
message: str,
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Generates a response using OpenLlamaForCausalLM.
"""
try:
# Check if the message contains a command
command, params = parse_command(message)
if command:
# Execute the corresponding function
response = execute_command(command, params)
else:
# Generate a regular response using OpenLlama
prompt = (
f"System: {system_message}\n"
f"History: {history}\n"
f"User: {message}\n"
f"Assistant:"
)
response = openllama_pipeline(
prompt,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
)[0]["generated_text"]
# Extract the assistant's reply
response = response.split("Assistant:")[-1].strip()
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Error generating response."
# Define the Gradio interface
def create_interface() -> gr.Blocks():
"""
Defines and returns the Gradio interface for the application.
"""
with gr.Blocks() as demo:
gr.Markdown("# All-in-One Scraper, Database, and RSS Feeder")
with gr.Row():
with gr.Column():
# Scraping Controls
storage_location = gr.Textbox(
value=DEFAULT_FILE_PATH, label="Storage Location"
)
urls = gr.Textbox(
label="URLs (comma separated)",
placeholder="https://example.com, https://anotherexample.com",
)
scrape_interval = gr.Slider(
minimum=1,
maximum=60,
value=5,
step=1,
label="Scrape Interval (minutes)",
)
content_type = gr.Radio(
choices=["text", "media", "both"],
value="text",
label="Content Type",
)
selector = gr.Textbox(
label="CSS Selector for Media (Optional)",
placeholder="e.g., img.main-image",
)
start_button = gr.Button("Start Scraping")
stop_button = gr.Button("Stop Scraping")
status_output = gr.Textbox(
label="Status Output", interactive=False, lines=2
)
with gr.Column():
# Chat Interface
chat_history = gr.Chatbot(label="Chat History", type='messages')
with gr.Row():
message = gr.Textbox(label="Message", placeholder="Type your message here...")
system_message = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
response_box = gr.Textbox(label="Response", interactive=False, lines=2)
with gr.Row():
with gr.Column():
# CSV Display Controls
selected_url_csv = gr.Textbox(
label="Select URL for CSV Content",
placeholder="https://example.com",
)
csv_button = gr.Button("Display CSV Content")
csv_content_output = gr.Textbox(
label="CSV Content Output", interactive=False, lines=10
)
with gr.Column():
# RSS Feed Generation Controls
selected_url_rss = gr.Textbox(
label="Select URL for RSS Feed",
placeholder="https://example.com",
)
rss_button = gr.Button("Generate RSS Feed")
rss_output = gr.Textbox(
label="RSS Feed Output", interactive=False, lines=20
)
# Historical Data View
with gr.Row():
with gr.Column():
historical_view_url = gr.Textbox(
label="Select URL for Historical Data",
placeholder="https://example.com",
)
historical_button = gr.Button("View Historical Data")
historical_output = gr.Dataframe(
headers=["ID", "URL", "Content Hash", "Change Detected"],
label="Historical Data",
interactive=False
)
# Connect buttons to their respective functions
start_button.click(
fn=start_scraping,
inputs=[
storage_location,
urls,
scrape_interval,
content_type,
selector,
],
outputs=status_output,
)
stop_button.click(fn=stop_scraping, outputs=status_output)
csv_button.click(
fn=display_csv,
inputs=[storage_location, selected_url_csv],
outputs=csv_content_output,
)
rss_button.click(
fn=generate_rss_feed,
inputs=[storage_location, selected_url_rss],
outputs=rss_output,
)
historical_button.click(
fn=display_historical_data,
inputs=[storage_location, historical_view_url],
outputs=historical_output,
)
# Connect message submission to the chat interface
def update_chat(message_input, history, system_msg, max_toks, temp, top_p_val):
if not message_input.strip():
return history, "Please enter a message."
response = respond(
message_input,
history,
system_msg,
max_toks,
temp,
top_p_val,
)
history.append((message_input, response))
return history, response
message.submit(
update_chat,
inputs=[
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
],
outputs=[chat_history, response_box],
)
return demo
# Function to display historical data
def display_historical_data(storage_location: str, url: str):
"""
Retrieves and displays historical scraping data for a given URL.
"""
try:
connection = get_db_connection()
if connection:
try:
cursor = connection.cursor(dictionary=True)
query = "SELECT * FROM scraped_data WHERE url = %s ORDER BY change_detected DESC"
cursor.execute(query, (url,))
results = cursor.fetchall()
if not results:
return pd.DataFrame()
df = pd.DataFrame(results)
cursor.close()
connection.close()
return df
except mysql.connector.Error as err:
logging.error(f"Error fetching historical data from database: {err}")
# Fallback to CSV
else:
logging.info("No database connection. Fetching historical data from CSV.")
# Fallback to CSV
hostname = urlparse(url).hostname
csv_path = os.path.join(storage_location, f"{hostname}_changes.csv")
if os.path.exists(csv_path):
df = pd.read_csv(csv_path)
return df
else:
return pd.DataFrame()
except Exception as e:
logging.error(f"Error fetching historical data for {url}: {e}")
return pd.DataFrame()
def load_model():
"""
Loads the openLlama model and tokenizer once and returns the pipeline.
"""
try:
model_name = "openlm-research/open_llama_3b_v2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
model = AutoModelForCausalLM.from_pretrained(model_name)
# This should be inside the try block
max_supported_length = 2048
openllama_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=max_supported_length,
temperature=0.7,
top_p=0.95,
device=0 if torch.cuda.is_available() else -1,
)
logging.info("Model loaded successfully.")
return openllama_pipeline # Return the pipeline
except Exception as e:
logging.error(f"Error loading google/flan-t5-xl model: {e}")
return None
def load_model(model_name: str):
"""
Loads the specified model and tokenizer.
"""
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, legacy=False)
model = AutoModelForCausalLM.from_pretrained(model_name)
# This should be inside the try block
max_supported_length = 2048 # Get this from the model config
openllama_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=max_supported_length,
temperature=0.7,
top_p=0.95,
device=0 if torch.cuda.is_available() else -1,
)
logging.info(f"{model_name} loaded successfully.")
return openllama_pipeline
except Exception as e:
logging.error(f"Error loading {model_name} model: {e}")
return None
# Automated Testing using unittest
class TestApp(unittest.TestCase):
def test_parse_command_filter(self):
command = "Filter apples, oranges in column Description"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "filter")
self.assertListEqual(parsed_command[1]["words"], ["apples", "oranges"])
self.assertEqual(parsed_command[1]["column"], "Description")
def test_parse_command_sort(self):
command = "Sort Price ascending"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "sort")
self.assertEqual(parsed_command[1]["column"], "Price")
self.assertEqual(parsed_command[1]["order"], "ascending")
def test_parse_command_export(self):
command = "Export to CSV as filtered_data.csv"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "export")
self.assertEqual(parsed_command[1]["filename"], "filtered_data.csv")
def test_parse_command_log(self):
command = "Log action Filtered data for specific fruits"
parsed_command = parse_command(command)
self.assertEqual(parsed_command[0], "log")
self.assertEqual(parsed_command[1]["action"], "Filtered data for specific fruits")
def test_database_connection(self):
connection = get_db_connection()
# Connection may be None if not configured; adjust the test accordingly
if connection:
self.assertTrue(connection.is_connected())
connection.close()
else:
self.assertIsNone(connection)
def main():
# Initialize and run the application
logging.info("Starting the application...")
model = load_model()
if model:
logging.info("Application started successfully.")
print("Main function executed")
print("Creating interface...")
demo = create_interface()
print("Launching interface...")
demo.launch(server_name="0.0.0.0", server_port=7860)
else:
logging.error("Failed to start the application.")
# Main execution
if __name__ == "__main__":
# Initialize database
initialize_database()
# Create and launch Gradio interface
demo = create_interface()
demo.launch()
# Run automated tests
unittest.main(argv=[''], exit=False) |