Spaces:
Runtime error
Runtime error
File size: 77,899 Bytes
3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 4fe9644 a5aeaec 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 6e9a206 3e76558 a5aeaec 6e9a206 0e9bf0c 3e76558 0e9bf0c 3e76558 6e9a206 0e9bf0c 6e9a206 0e9bf0c 6e9a206 0e9bf0c 6e9a206 3e76558 6e9a206 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c b76e9b0 0e9bf0c b76e9b0 0e9bf0c b76e9b0 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c b76e9b0 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 3e76558 a9df132 0e9bf0c a9df132 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c 3e76558 0e9bf0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 |
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
AutoModel
)
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
from transformers import BlipForConditionalGeneration
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True)
@dataclass
class Template:
"""Template data structure"""
code: str
description: str
components: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
version: str = "1.0"
class ComponentType(Enum):
"""Supported Gradio component types"""
IMAGE = "Image"
TEXTBOX = "Textbox"
BUTTON = "Button"
NUMBER = "Number"
MARKDOWN = "Markdown"
JSON = "JSON"
HTML = "HTML"
CODE = "Code"
DROPDOWN = "Dropdown"
SLIDER = "Slider"
CHECKBOX = "Checkbox"
RADIO = "Radio"
AUDIO = "Audio"
VIDEO = "Video"
FILE = "File"
DATAFRAME = "DataFrame"
LABEL = "Label"
PLOT = "Plot"
@dataclass
class ComponentConfig:
"""Configuration for Gradio components"""
type: ComponentType
label: str
properties: Dict[str, Any] = field(default_factory=dict)
events: List[str] = field(default_factory=list)
class BuilderError(Exception):
"""Base exception for Gradio Builder errors"""
pass
class ValidationError(BuilderError):
"""Raised when validation fails"""
pass
class GenerationError(BuilderError):
"""Raised when code generation fails"""
pass
class ModelError(BuilderError):
"""Raised when model operations fail"""
pass
def setup_gpu_memory():
"""Configure GPU memory usage"""
try:
if torch.cuda.is_available():
# Enable memory growth
torch.cuda.empty_cache()
# Set memory fraction
torch.cuda.set_per_process_memory_fraction(0.8)
logger.info("GPU memory configured successfully")
else:
logger.info("No GPU available, using CPU")
except Exception as e:
logger.warning(f"Error configuring GPU memory: {e}")
def validate_code(code: str) -> Tuple[bool, str]:
"""Validate Python code syntax"""
try:
ast.parse(code)
return True, "Code is valid"
except SyntaxError as e:
line_no = e.lineno
offset = e.offset
line = e.text
if line:
pointer = " " * (offset - 1) + "^"
error_detail = f"\nLine {line_no}:\n{line}\n{pointer}"
else:
error_detail = f" at line {line_no}"
return False, f"Syntax error: {str(e)}{error_detail}"
except Exception as e:
return False, f"Validation error: {str(e)}"
class CodeFormatter:
"""Handles code formatting and cleanup"""
@staticmethod
def format_code(code: str) -> str:
"""Format code using black"""
try:
import black
return black.format_str(code, mode=black.FileMode())
except ImportError:
logger.warning("black not installed, returning unformatted code")
return code
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
@staticmethod
def cleanup_code(code: str) -> str:
"""Clean up generated code"""
# Remove any potential unsafe imports
unsafe_imports = ['os', 'subprocess', 'sys']
lines = code.split('\n')
cleaned_lines = []
for line in lines:
skip = False
for unsafe in unsafe_imports:
if f"import {unsafe}" in line or f"from {unsafe}" in line:
skip = True
break
if not skip:
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def create_temp_module(code: str) -> str:
"""Create a temporary module from code"""
try:
temp_file = TEMP_DIR / f"temp_module_{int(time.time())}.py"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(code)
return str(temp_file)
except Exception as e:
raise BuilderError(f"Failed to create temporary module: {e}")
# Initialize GPU configuration
setup_gpu_memory()
class ModelManager:
"""Manages AI models and their configurations"""
def __init__(self, cache_dir: Path = MODEL_CACHE_DIR):
self.cache_dir = cache_dir
self.cache_dir.mkdir(exist_ok=True)
self.loaded_models = {}
self.model_configs = {
"code_generator": {
"model_id": "bigcode/starcoder",
"tokenizer": AutoTokenizer,
"model": AutoModelForCausalLM,
"kwargs": {
"torch_dtype": torch.float16,
"device_map": "auto",
"cache_dir": str(cache_dir)
}
},
"image_processor": {
"model_id": "Salesforce/blip-image-captioning-base",
"processor": AutoProcessor,
"model": BlipForConditionalGeneration,
"kwargs": {
"cache_dir": str(cache_dir),
"device_map": "auto"
}
}
}
def load_model(self, model_type: str):
"""Load a model by type"""
try:
if model_type not in self.model_configs:
raise ModelError(f"Unknown model type: {model_type}")
if model_type in self.loaded_models:
return self.loaded_models[model_type]
config = self.model_configs[model_type]
logger.info(f"Loading {model_type} model...")
if model_type == "code_generator":
tokenizer = config["tokenizer"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, tokenizer)
elif model_type == "image_processor":
try:
processor = config["processor"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
if torch.cuda.is_available():
model = model.to("cuda")
self.loaded_models[model_type] = (model, processor)
logger.info(f"{model_type} model loaded successfully")
except Exception as e:
logger.error(f"Error loading {model_type} model: {e}")
raise ModelError(f"Failed to load {model_type} model: {e}")
logger.info(f"{model_type} model loaded successfully")
return self.loaded_models[model_type]
except Exception as e:
raise ModelError(f"Error loading {model_type} model: {str(e)}")
def unload_model(self, model_type: str):
"""Unload a model to free memory"""
if model_type in self.loaded_models:
del self.loaded_models[model_type]
torch.cuda.empty_cache()
logger.info(f"{model_type} model unloaded")
class MultimodalRAG:
"""Multimodal Retrieval-Augmented Generation system"""
def __init__(self):
"""Initialize the multimodal RAG system"""
try:
self.model_manager = ModelManager()
# Load text encoder
self.text_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize vector store
self.vector_store = self._initialize_vector_store()
# Load template database
self.template_embeddings = {}
self._initialize_template_embeddings()
except Exception as e:
raise ModelError(f"Error initializing MultimodalRAG: {str(e)}")
def _initialize_vector_store(self) -> faiss.IndexFlatL2:
"""Initialize FAISS vector store"""
combined_dim = 768 + 384 # BLIP (768) + text (384)
return faiss.IndexFlatL2(combined_dim)
def _initialize_template_embeddings(self):
"""Initialize template embeddings"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
if template_path.exists():
data = np.load(template_path)
self.template_embeddings = {
name: embedding for name, embedding in data.items()
}
except Exception as e:
logger.error(f"Error loading template embeddings: {e}")
def encode_image(self, image: Image.Image) -> np.ndarray:
"""Encode image using BLIP"""
try:
model, processor = self.model_manager.load_model("image_processor")
# Process image
inputs = processor(images=image, return_tensors="pt").to(model.device)
# Get image features using the proper method
with torch.no_grad():
outputs = model.get_image_features(**inputs)
image_features = outputs.last_hidden_state.mean(dim=1) # Average pooling
return image_features.cpu().numpy()
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise ModelError(f"Error encoding image: {str(e)}")
def encode_text(self, text: str) -> np.ndarray:
"""Encode text using sentence-transformers"""
try:
return self.text_encoder.encode(text)
except Exception as e:
raise ModelError(f"Error encoding text: {str(e)}")
# ... rest of the MultimodalRAG class methods ...
def generate_code(self, description: str, template_code: str) -> str:
"""Generate code using StarCoder"""
try:
model, tokenizer = self.model_manager.load_model("code_generator")
prompt = f"""
# Task: Generate a Gradio interface based on the description
# Description: {description}
# Base template:
{template_code}
# Generate a customized version of the template that implements the description.
# Only output the Python code, no explanations.
```python
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=2048,
temperature=0.2,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean and format the generated code
generated_code = self._clean_generated_code(generated_code)
return CodeFormatter.format_code(generated_code)
except Exception as e:
raise GenerationError(f"Error generating code: {str(e)}")
def _clean_generated_code(self, code: str) -> str:
"""Clean and format generated code"""
# Extract code between triple backticks if present
if "```python" in code:
code = code.split("```python")[1].split("```")[0]
elif "```" in code:
code = code.split("```")[1].split("```")[0]
code = code.strip()
return CodeFormatter.cleanup_code(code)
def find_similar_template(
self,
screenshot: Optional[Image.Image],
description: str
) -> Tuple[str, Template]:
"""Find most similar template based on image and description"""
try:
# Get embeddings
text_embedding = self.encode_text(description)
if screenshot:
img_embedding = self.encode_image(screenshot)
query_embedding = np.concatenate([
img_embedding.flatten(),
text_embedding
])
else:
# If no image, duplicate text embedding to match dimensions
query_embedding = np.concatenate([
text_embedding,
text_embedding
])
# Search in vector store
D, I = self.vector_store.search(
np.array([query_embedding]),
k=1
)
# Get template name from index
template_names = list(self.template_embeddings.keys())
template_name = template_names[I[0][0]]
# Load template
template_path = TEMPLATE_DIR / f"{template_name}.json"
with open(template_path, 'r') as f:
template_data = json.load(f)
template = Template(**template_data)
return template_name, template
except Exception as e:
raise ModelError(f"Error finding similar template: {str(e)}")
def generate_interface(
self,
screenshot: Optional[Image.Image],
description: str
) -> str:
"""Generate complete interface based on input"""
try:
# Find similar template
template_name, template = self.find_similar_template(
screenshot,
description
)
# Generate customized code
custom_code = self.generate_code(
description,
template.code
)
return custom_code
except Exception as e:
raise GenerationError(f"Error generating interface: {str(e)}")
def cleanup(self):
"""Cleanup resources"""
try:
# Save template embeddings
self.save_template_embeddings()
# Unload models
self.model_manager.unload_model("code_generator")
self.model_manager.unload_model("image_processor")
# Clear CUDA cache
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
class TemplateManager:
"""Manages Gradio interface templates"""
def __init__(self, template_dir: Path = TEMPLATE_DIR):
self.template_dir = template_dir
self.template_dir.mkdir(exist_ok=True)
self.templates: Dict[str, Template] = {}
self.load_templates()
def load_templates(self):
"""Load all templates from directory"""
try:
# Load built-in templates
self.templates.update(self._get_builtin_templates())
# Load custom templates
for template_file in self.template_dir.glob("*.json"):
try:
with open(template_file, 'r', encoding='utf-8') as f:
template_data = json.load(f)
name = template_file.stem
self.templates[name] = Template(**template_data)
except Exception as e:
logger.error(f"Error loading template {template_file}: {e}")
except Exception as e:
logger.error(f"Error loading templates: {e}")
def _get_builtin_templates(self) -> Dict[str, Template]:
"""Get built-in templates"""
return {
"image_classifier": Template(
code="""
import gradio as gr
import numpy as np
from PIL import Image
def classify_image(image):
if image is None:
return {"error": 1.0}
return {"class1": 0.8, "class2": 0.2}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Classifier")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
classify_btn = gr.Button("Classify")
with gr.Column():
output_labels = gr.Label()
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=output_labels
)
if __name__ == "__main__":
demo.launch()
""",
description="Basic image classification interface",
components=["Image", "Button", "Label"],
metadata={"category": "computer_vision"}
),
"chatbot": Template(
code="""
import gradio as gr
def respond(message, history):
return f"You said: {message}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message")
clear = gr.Button("Clear")
msg.submit(respond, [msg, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
""",
description="Interactive chatbot interface",
components=["Chatbot", "Textbox", "Button"],
metadata={"category": "nlp"}
),
"audio_processor": Template(
code="""
import gradio as gr
import numpy as np
def process_audio(audio, volume_factor=1.0):
if audio is None:
return None
sr, data = audio
return (sr, data * volume_factor)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Audio Processor")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(source="microphone", type="numpy")
volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume")
process_btn = gr.Button("Process")
with gr.Column():
output_audio = gr.Audio(type="numpy")
process_btn.click(
fn=process_audio,
inputs=[input_audio, volume],
outputs=output_audio
)
if __name__ == "__main__":
demo.launch()
""",
description="Audio processing interface",
components=["Audio", "Slider", "Button"],
metadata={"category": "audio"}
),
"file_processor": Template(
code="""
import gradio as gr
def process_file(file):
if file is None:
return "No file uploaded"
return f"Processed file: {file.name}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Processor")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
process_btn = gr.Button("Process")
with gr.Column():
output = gr.Textbox(label="Results")
json_output = gr.JSON(label="Detailed Results")
process_btn.click(
fn=process_file,
inputs=file_input,
outputs=[output, json_output]
)
if __name__ == "__main__":
demo.launch()
""",
description="File processing interface",
components=["File", "Button", "Textbox", "JSON"],
metadata={"category": "utility"}
),
"data_visualization": Template(
code="""
import gradio as gr
import pandas as pd
import plotly.express as px
def visualize_data(data, plot_type):
if data is None:
return None
df = pd.read_csv(data.name)
if plot_type == "scatter":
fig = px.scatter(df, x=df.columns[0], y=df.columns[1])
elif plot_type == "line":
fig = px.line(df, x=df.columns[0], y=df.columns[1])
else:
fig = px.bar(df, x=df.columns[0], y=df.columns[1])
return fig
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Visualizer")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload CSV")
plot_type = gr.Radio(
choices=["scatter", "line", "bar"],
label="Plot Type",
value="scatter"
)
visualize_btn = gr.Button("Visualize")
with gr.Column():
plot_output = gr.Plot(label="Visualization")
visualize_btn.click(
fn=visualize_data,
inputs=[file_input, plot_type],
outputs=plot_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Data visualization interface",
components=["File", "Radio", "Button", "Plot"],
metadata={"category": "data_science"}
),
"form_builder": Template(
code="""
import gradio as gr
import json
def submit_form(name, email, age, interests, subscribe):
return json.dumps({
"name": name,
"email": email,
"age": age,
"interests": interests,
"subscribe": subscribe
}, indent=2)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Form Builder")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Name")
email = gr.Textbox(label="Email")
age = gr.Number(label="Age")
interests = gr.CheckboxGroup(
choices=["Sports", "Music", "Art", "Technology"],
label="Interests"
)
subscribe = gr.Checkbox(label="Subscribe to newsletter")
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.JSON(label="Form Data")
submit_btn.click(
fn=submit_form,
inputs=[name, email, age, interests, subscribe],
outputs=output
)
if __name__ == "__main__":
demo.launch()
""",
description="Form builder interface",
components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"],
metadata={"category": "utility"}
)
}
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
def _build_component_index(self) -> Dict[str, List[str]]:
"""Build index of templates by component"""
index = {}
for name, template in self.templates.items():
for component in template.components:
if component not in index:
index[component] = []
index[component].append(name)
return index
def _build_category_index(self) -> Dict[str, List[str]]:
"""Build index of templates by category"""
index = {}
for name, template in self.templates.items():
category = template.metadata.get("category", "other")
if category not in index:
index[category] = []
index[category].append(name)
return index
def search(self, query: str, limit: int = 5) -> List[Dict]:
"""Search templates by description or metadata"""
try:
results = []
for name, template in self.templates.items():
desc_score = difflib.SequenceMatcher(
None,
query.lower(),
template.description.lower()
).ratio()
category_score = difflib.SequenceMatcher(
None,
query.lower(),
template.metadata.get("category", "").lower()
).ratio()
comp_score = sum(0.2 for component in template.components if component.lower() in query.lower())
final_score = max(desc_score, category_score) + comp_score
results.append({
"name": name,
"template": template,
"score": final_score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching templates: {str(e)}")
return []
def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]:
"""Search templates by required components"""
try:
results = []
for name, template in self.templates.items():
matches = sum(1 for c in components if c in template.components)
if matches > 0:
score = matches / len(components)
results.append({
"name": name,
"template": template,
"score": score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching by components: {str(e)}")
return []
def search_by_category(self, category: str) -> List[Dict]:
"""Get all templates in a category"""
try:
return [
{
"name": name,
"template": self.templates[name]
}
for name in self.category_index.get(category, [])
]
except Exception as e:
logger.error(f"Error searching by category: {str(e)}")
return []
def get_template(self, name: str) -> Optional[Template]:
"""Get specific template by name"""
return self.templates.get(name)
def get_categories(self) -> List[str]:
"""Get list of all categories"""
return list(self.category_index.keys())
def get_components(self) -> List[str]:
"""Get list of all components"""
return list(self.component_index.keys())
def export_templates(self, path: str):
"""Export templates to JSON file"""
try:
data = {
name: {
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"example": template.example
}
for name, template in self.templates.items()
}
with open(path, 'w') as f:
json.dump(data, f, indent=2)
logger.info(f"Templates exported to {path}")
except Exception as e:
logger.error(f"Error exporting templates: {str(e)}")
raise
def import_templates(self, path: str):
"""Import templates from JSON file"""
try:
with open(path, 'r') as f:
data = json.load(f)
for name, template_data in data.items():
self.templates[name] = Template(
code="", # Code should be loaded separately
description=template_data["description"],
components=template_data["components"],
metadata=template_data["metadata"],
example=template_data.get("example")
)
# Rebuild indexes
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
logger.info(f"Templates imported from {path}")
except Exception as e:
logger.error(f"Error importing templates: {str(e)}")
raise
# Usage example:
if __name__ == "__main__":
# Initialize template manager
manager = TemplateManager()
# Search examples
print("\nSearching for 'machine learning':")
results = manager.search("machine learning")
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nSearching for components ['Image', 'Slider']:")
results = manager.search_by_components(['Image', 'Slider'])
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nCategories available:")
print(manager.get_categories())
print("\nComponents available:")
print(manager.get_components())
"text_summarizer": Template(
code="""
import gradio as gr
from transformers import pipeline
summarizer = pipeline("summarization")
def summarize_text(text):
summary = summarizer(text, max_length=150, min_length=40, do_sample=False)
return summary[0]['summary_text']
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text Summarizer")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...")
summarize_btn = gr.Button("Summarize")
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=5)
summarize_btn.click(
fn=summarize_text,
inputs=input_text,
outputs=summary_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Text summarization interface using a transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"image_captioner": Template(
code="""
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Caption Generator")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
caption_btn = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Textbox(label="Generated Caption")
caption_btn.click(
fn=generate_caption,
inputs=input_image,
outputs=caption_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Image captioning interface using a transformer model",
components=["Image", "Button", "Textbox"],
metadata={"category": "computer_vision"}
),
"style_transfer": Template(
code="""
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def apply_style(content_image, style_image):
content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...]
style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...]
stylized_image = hub_model(content_image, style_image)[0]
return tf.squeeze(stylized_image).numpy()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Neural Style Transfer")
with gr.Row():
with gr.Column():
content_image = gr.Image(label="Content Image")
style_image = gr.Image(label="Style Image")
transfer_btn = gr.Button("Transfer Style")
with gr.Column():
output_image = gr.Image(label="Stylized Image")
transfer_btn.click(
fn=apply_style,
inputs=[content_image, style_image],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()
""",
description="Neural style transfer between two images",
components=["Image", "Button"],
metadata={"category": "computer_vision"}
),
"sentiment_analysis": Template(
code="""
import gradio as gr
from transformers import pipeline
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"{result['label']} ({result['score']:.2f})"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Sentiment Analysis")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...")
analyze_btn = gr.Button("Analyze Sentiment")
with gr.Column():
sentiment_output = gr.Textbox(label="Sentiment Result")
analyze_btn.click(
fn=analyze_sentiment,
inputs=input_text,
outputs=sentiment_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Sentiment analysis using transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"pdf_to_text": Template(
code="""
import gradio as gr
import PyPDF2
def extract_text_from_pdf(pdf):
reader = PyPDF2.PdfFileReader(pdf)
text = ''
for page_num in range(reader.numPages):
page = reader.getPage(page_num)
text += page.extract_text()
return text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# PDF to Text Extractor")
with gr.Row():
with gr.Column():
pdf_file = gr.File(label="Upload PDF")
extract_btn = gr.Button("Extract Text")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=10)
extract_btn.click(
fn=extract_text_from_pdf,
inputs=pdf_file,
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
""",
description="Extract text from PDF files",
components=["File", "Button", "Textbox"],
metadata={"category": "utility"}
)
"website_monitor": Template(
code="""
import gradio as gr
import requests
from datetime import datetime
def monitor_website(url):
try:
response = requests.get(url)
status_code = response.status_code
status = "Up" if status_code == 200 else "Down"
return {
"url": url,
"status": status,
"response_time": response.elapsed.total_seconds(),
"last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Website Uptime Monitor")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
check_btn = gr.Button("Check Website")
with gr.Column():
result_output = gr.JSON(label="Monitoring Result")
check_btn.click(
fn=monitor_website,
inputs=url_input,
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Monitor the uptime and response time of a website",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_monitoring"}
),
"rss_feed_fetcher": Template(
code="""
import gradio as gr
import feedparser
def fetch_rss_feed(url):
feed = feedparser.parse(url)
if feed.bozo:
return {"error": "Invalid RSS feed URL"}
return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# RSS Feed Fetcher")
with gr.Row():
with gr.Column():
feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed")
fetch_btn = gr.Button("Fetch Latest Posts")
with gr.Column():
feed_output = gr.JSON(label="Latest Feed Entries")
fetch_btn.click(
fn=fetch_rss_feed,
inputs=feed_url,
outputs=feed_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Fetch the latest entries from an RSS feed",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"web_scraper": Template(
code="""
import gradio as gr
from bs4 import BeautifulSoup
import requests
def scrape_website(url, tag):
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
elements = soup.find_all(tag)
return [element.get_text() for element in elements][:5] # Limit to 5 elements
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Web Scraper")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.")
scrape_btn = gr.Button("Scrape Website")
with gr.Column():
result_output = gr.JSON(label="Scraped Results")
scrape_btn.click(
fn=scrape_website,
inputs=[url_input, tag_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Scrape text from a website based on the specified HTML tag",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"api_tester": Template(
code="""
import gradio as gr
import requests
def test_api(endpoint, method, payload):
try:
if method == "GET":
response = requests.get(endpoint)
elif method == "POST":
response = requests.post(endpoint, json=payload)
else:
return "Unsupported method"
return {
"status_code": response.status_code,
"response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# API Tester")
with gr.Row():
with gr.Column():
endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint")
method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET")
payload = gr.JSON(label="Payload (for POST)", value={})
test_btn = gr.Button("Test API")
with gr.Column():
result_output = gr.JSON(label="API Response")
test_btn.click(
fn=test_api,
inputs=[endpoint, method, payload],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Test API endpoints with GET and POST requests",
components=["Textbox", "Radio", "JSON", "Button"],
metadata={"category": "api_testing"}
),
"email_scheduler": Template(
code="""
import gradio as gr
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler()
scheduler.start()
def send_email(to_email, subject, body):
try:
sender_email = "[email protected]"
password = "your_password"
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = to_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login(sender_email, password)
text = msg.as_string()
server.sendmail(sender_email, to_email, text)
server.quit()
return "Email sent successfully"
except Exception as e:
return f"Error: {str(e)}"
def schedule_email(to_email, subject, body, delay):
scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body])
return f"Email scheduled to be sent in {delay} seconds"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Email Scheduler")
with gr.Row():
with gr.Column():
to_email = gr.Textbox(label="Recipient Email")
subject = gr.Textbox(label="Subject")
body = gr.Textbox(label="Email Body", lines=5)
delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60)
schedule_btn = gr.Button("Schedule Email")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_email,
inputs=[to_email, subject, body, delay],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule emails to be sent after a delay",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
)
"log_file_analyzer": Template(
code="""
import gradio as gr
import re
def analyze_logs(log_file, filter_text):
try:
logs = log_file.read().decode("utf-8")
if filter_text:
filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)])
else:
filtered_logs = logs
return filtered_logs
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Log File Analyzer")
with gr.Row():
with gr.Column():
log_input = gr.File(label="Upload Log File")
filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning")
analyze_btn = gr.Button("Analyze Logs")
with gr.Column():
output_logs = gr.Textbox(label="Filtered Logs", lines=20)
analyze_btn.click(
fn=analyze_logs,
inputs=[log_input, filter_input],
outputs=output_logs
)
if __name__ == "__main__":
demo.launch()
""",
description="Analyze and filter log files using regex",
components=["File", "Textbox", "Button"],
metadata={"category": "log_analysis"}
),
"file_encryption_tool": Template(
code="""
import gradio as gr
from cryptography.fernet import Fernet
def encrypt_file(file, password):
try:
key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping
cipher = Fernet(Fernet.generate_key())
file_data = file.read()
encrypted_data = cipher.encrypt(file_data)
return encrypted_data.decode("utf-8")
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Encryption Tool")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
password_input = gr.Textbox(label="Password", type="password")
encrypt_btn = gr.Button("Encrypt File")
with gr.Column():
encrypted_output = gr.Textbox(label="Encrypted Data", lines=20)
encrypt_btn.click(
fn=encrypt_file,
inputs=[file_input, password_input],
outputs=encrypted_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Encrypt a file using a password-based key",
components=["File", "Textbox", "Button"],
metadata={"category": "security"}
),
"task_scheduler": Template(
code="""
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
scheduler = BackgroundScheduler()
scheduler.start()
def schedule_task(task_name, interval):
scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval)
return f"Task '{task_name}' scheduled to run every {interval} seconds."
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Task Scheduler")
with gr.Row():
with gr.Column():
task_input = gr.Textbox(label="Task Name", placeholder="Example Task")
interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10)
schedule_btn = gr.Button("Schedule Task")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_task,
inputs=[task_input, interval_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule tasks to run at regular intervals",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
),
"code_comparator": Template(
code="""
import gradio as gr
import difflib
def compare_code(code1, code2):
diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2')
return '\n'.join(diff)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Code Comparator")
with gr.Row():
with gr.Column():
code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...")
code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...")
compare_btn = gr.Button("Compare Codes")
with gr.Column():
diff_output = gr.Textbox(label="Difference", lines=20)
compare_btn.click(
fn=compare_code,
inputs=[code1_input, code2_input],
outputs=diff_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Compare two code snippets and show the differences",
components=["Textbox", "Button"],
metadata={"category": "development"}
),
"database_query_tool": Template(
code="""
import gradio as gr
import sqlite3
def query_database(db_file, query):
try:
conn = sqlite3.connect(db_file.name)
cursor = conn.cursor()
cursor.execute(query)
results = cursor.fetchall()
conn.close()
return results
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Database Query Tool")
with gr.Row():
with gr.Column():
db_input = gr.File(label="Upload SQLite DB File")
query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;")
}
def save_template(self, name: str, template: Template) -> bool:
"""Save new template"""
try:
template_path = self.template_dir / f"{name}.json"
template_dict = {
"code": template.code,
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"version": template.version
}
with open(template_path, 'w', encoding='utf-8') as f:
json.dump(template_dict, f, indent=4)
self.templates[name] = template
return True
except Exception as e:
logger.error(f"Error saving template {name}: {e}")
return False
def get_template(self, name: str) -> Optional[Template]:
"""Get template by name"""
return self.templates.get(name)
def list_templates(self, category: Optional[str] = None) -> List[Dict[str, Any]]:
"""List all available templates with optional category filter"""
templates_list = []
for name, template in self.templates.items():
if category and template.metadata.get("category") != category:
continue
templates_list.append({
"name": name,
"description": template.description,
"components": template.components,
"category": template.metadata.get("category", "general")
})
return templates_list
class InterfaceAnalyzer:
"""Analyzes Gradio interfaces"""
@staticmethod
def extract_components(code: str) -> List[ComponentConfig]:
"""Extract components from code"""
components = []
try:
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == 'gr':
component_type = node.func.attr
if hasattr(ComponentType, component_type.upper()):
# Extract component properties
properties = {}
label = None
events = []
# Get properties from keywords
for keyword in node.keywords:
if keyword.arg == 'label':
try:
label = ast.literal_eval(keyword.value)
except:
label = None
else:
try:
properties[keyword.arg] = ast.literal_eval(keyword.value)
except:
properties[keyword.arg] = None
# Look for event handlers
parent = InterfaceAnalyzer._find_parent_assign(tree, node)
if parent:
events = InterfaceAnalyzer._find_component_events(tree, parent)
components.append(ComponentConfig(
type=ComponentType[component_type.upper()],
label=label or component_type,
properties=properties,
events=events
))
except Exception as e:
logger.error(f"Error extracting components: {e}")
return components
@staticmethod
def _find_parent_assign(tree: ast.AST, node: ast.Call) -> Optional[ast.AST]:
"""Find the assignment node for a component"""
for potential_parent in ast.walk(tree):
if isinstance(potential_parent, ast.Assign):
for child in ast.walk(potential_parent.value):
if child == node:
return potential_parent
return None
@staticmethod
def _find_component_events(tree: ast.AST, assign_node: ast.Assign) -> List[str]:
"""Find events attached to a component"""
events = []
component_name = assign_node.targets[0].id
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == component_name:
events.append(node.func.attr)
return events
@staticmethod
def analyze_interface_structure(code: str) -> Dict[str, Any]:
"""Analyze interface structure"""
try:
# Extract components
components = InterfaceAnalyzer.extract_components(code)
# Analyze functions
functions = []
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
functions.append({
"name": node.name,
"args": [arg.arg for arg in node.args.args],
"returns": InterfaceAnalyzer._get_return_type(node)
})
# Analyze dependencies
dependencies = set()
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
dependencies.add(name.name)
elif isinstance(node, ast.ImportFrom):
if node.module:
dependencies.add(node.module)
return {
"components": [
{
"type": comp.type.value,
"label": comp.label,
"properties": comp.properties,
"events": comp.events
}
for comp in components
],
"functions": functions,
"dependencies": list(dependencies)
}
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}
@staticmethod
def _get_return_type(node: ast.FunctionDef) -> str:
"""Get function return type if specified"""
if node.returns:
return ast.unparse(node.returns)
return "Any"
class PreviewManager:
"""Manages interface previews"""
def __init__(self):
self.current_process: Optional[subprocess.Popen] = None
self.preview_port = DEFAULT_PORT
self._lock = threading.Lock()
def start_preview(self, code: str) -> Tuple[bool, str]:
"""Start preview in a separate process"""
with self._lock:
try:
self.stop_preview()
# Create temporary module
module_path = create_temp_module(code)
# Start new process
self.current_process = subprocess.Popen(
['python', module_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# Wait for server to start
time.sleep(2)
# Check if process is still running
if self.current_process.poll() is not None:
stdout, stderr = self.current_process.communicate()
error_msg = stderr.decode('utf-8')
raise RuntimeError(f"Preview failed to start: {error_msg}")
return True, f"http://localhost:{self.preview_port}"
except Exception as e:
return False, str(e)
def stop_preview(self):
"""Stop current preview process"""
if self.current_process:
self.current_process.terminate()
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
self.current_process.kill()
self.current_process = None
def cleanup(self):
"""Cleanup resources"""
self.stop_preview()
# Clean up temporary files
for temp_file in TEMP_DIR.glob("*.py"):
try:
temp_file.unlink()
except Exception as e:
logger.error(f"Error deleting temporary file {temp_file}: {e}")
class GradioInterface:
"""Main Gradio interface builder class"""
def __init__(self):
"""Initialize the Gradio interface builder"""
try:
self.rag_system = MultimodalRAG()
self.template_manager = TemplateManager()
self.preview_manager = PreviewManager()
self.current_code = ""
self.error_log = []
self.interface = self._create_interface()
except Exception as e:
logger.error(f"Error initializing GradioInterface: {str(e)}")
raise
def _create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# 🚀 Gradio Interface Builder")
with gr.Tabs():
# Design Tab
with gr.Tab("Design"):
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## 📝 Design Your Interface")
description = gr.Textbox(
label="Description",
placeholder="Describe the interface you want to create...",
lines=3
)
screenshot = gr.Image(
label="Screenshot (optional)",
type="pil"
)
with gr.Row():
generate_btn = gr.Button("🎨 Generate Interface", variant="primary")
clear_btn = gr.Button("🗑️ Clear")
# Template Selection
gr.Markdown("### 📚 Templates")
template_dropdown = gr.Dropdown(
choices=self._get_template_choices(),
label="Base Template",
interactive=True
)
with gr.Column(scale=3):
# Code Editor
code_editor = gr.Code(
label="Generated Code",
language="python",
interactive=True
)
with gr.Row():
validate_btn = gr.Button("✅ Validate")
format_btn = gr.Button("📋 Format")
save_template_btn = gr.Button("💾 Save as Template")
validation_output = gr.Markdown()
# Preview Tab
with gr.Tab("Preview"):
with gr.Row():
preview_btn = gr.Button("▶️ Start Preview", variant="primary")
stop_preview_btn = gr.Button("⏹️ Stop Preview")
preview_frame = gr.HTML(
label="Preview",
value="<p>Click 'Start Preview' to see your interface</p>"
)
preview_status = gr.Markdown()
# Analysis Tab
with gr.Tab("Analysis"):
analyze_btn = gr.Button("🔍 Analyze Interface")
with gr.Row():
with gr.Column():
gr.Markdown("### 🧩 Components")
components_json = gr.JSON(label="Detected Components")
with gr.Column():
gr.Markdown("### 🔄 Functions")
functions_json = gr.JSON(label="Interface Functions")
with gr.Row():
with gr.Column():
gr.Markdown("### 📦 Dependencies")
dependencies_json = gr.JSON(label="Required Dependencies")
with gr.Column():
gr.Markdown("### 📄 Requirements")
requirements_text = gr.Textbox(
label="requirements.txt",
lines=10
)
# Event handlers
generate_btn.click(
fn=self._generate_interface,
inputs=[description, screenshot, template_dropdown],
outputs=[code_editor, validation_output]
)
clear_btn.click(
fn=self._clear_interface,
outputs=[description, screenshot, code_editor, validation_output]
)
validate_btn.click(
fn=self._validate_code,
inputs=[code_editor],
outputs=[validation_output]
)
format_btn.click(
fn=self._format_code,
inputs=[code_editor],
outputs=[code_editor]
)
save_template_btn.click(
fn=self._save_as_template,
inputs=[code_editor, description],
outputs=[template_dropdown, validation_output]
)
preview_btn.click(
fn=self._start_preview,
inputs=[code_editor],
outputs=[preview_frame, preview_status]
)
stop_preview_btn.click(
fn=self._stop_preview,
outputs=[preview_frame, preview_status]
)
analyze_btn.click(
fn=self._analyze_interface,
inputs=[code_editor],
outputs=[
components_json,
functions_json,
dependencies_json,
requirements_text
]
)
# Update template dropdown when templates change
template_dropdown.change(
fn=self._load_template,
inputs=[template_dropdown],
outputs=[code_editor]
)
return interface
def _get_template_choices(self) -> List[str]:
"""Get list of available templates"""
templates = self.template_manager.list_templates()
return [""] + [t["name"] for t in templates]
def _generate_interface(
self,
description: str,
screenshot: Optional[Image.Image],
template_name: str
) -> Tuple[str, str]:
"""Generate interface code"""
try:
if template_name:
template = self.template_manager.get_template(template_name)
if template:
code = self.rag_system.generate_code(description, template.code)
else:
raise ValueError(f"Template {template_name} not found")
else:
code = self.rag_system.generate_interface(screenshot, description)
self.current_code = code
return code, "✅ Code generated successfully"
except Exception as e:
error_msg = f"❌ Error generating interface: {str(e)}"
logger.error(error_msg)
return "", error_msg
def _clear_interface(self) -> Tuple[str, None, str, str]:
"""Clear all inputs and outputs"""
self.current_code = ""
return "", None, "", ""
def _validate_code(self, code: str) -> str:
"""Validate code syntax"""
is_valid, message = validate_code(code)
return f"{'✅' if is_valid else '❌'} {message}"
def _format_code(self, code: str) -> str:
"""Format code"""
try:
return CodeFormatter.format_code(code)
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
def _save_as_template(self, code: str, description: str) -> Tuple[List[str], str]:
"""Save current code as template"""
try:
# Generate template name
base_name = "custom_template"
counter = 1
name = base_name
while self.template_manager.get_template(name):
name = f"{base_name}_{counter}"
counter += 1
# Create template
template = Template(
code=code,
description=description,
components=InterfaceAnalyzer.extract_components(code),
metadata={"category": "custom"}
)
# Save template
if self.template_manager.save_template(name, template):
return self._get_template_choices(), f"✅ Template saved as {name}"
else:
raise Exception("Failed to save template")
except Exception as e:
error_msg = f"❌ Error saving template: {str(e)}"
logger.error(error_msg)
return self._get_template_choices(), error_msg
def _start_preview(self, code: str) -> Tuple[str, str]:
"""Start interface preview"""
success, result = self.preview_manager.start_preview(code)
if success:
return f'<iframe src="{result}" width="100%" height="600px"></iframe>', "✅ Preview started"
else:
return "", f"❌ Preview failed: {result}"
def _stop_preview(self) -> Tuple[str, str]:
"""Stop interface preview"""
self.preview_manager.stop_preview()
return "<p>Preview stopped</p>", "✅ Preview stopped"
def _load_template(self, template_name: str) -> str:
"""Load selected template"""
if not template_name:
return ""
template = self.template_manager.get_template(template_name)
if template:
return template.code
return ""
def _analyze_interface(self, code: str) -> Tuple[Dict, Dict, Dict, str]:
"""Analyze interface structure"""
try:
analysis = InterfaceAnalyzer.analyze_interface_structure(code)
# Generate requirements.txt
dependencies = analysis.get("dependencies", [])
requirements = CodeGenerator.generate_requirements(dependencies)
return (
analysis.get("components", {}),
analysis.get("functions", {}),
{"dependencies": dependencies},
requirements
)
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}, {}, {}, ""
def launch(self, **kwargs):
"""Launch the interface"""
try:
self.interface.launch(**kwargs)
finally:
self.cleanup()
def cleanup(self):
"""Cleanup resources"""
try:
self.preview_manager.cleanup()
self.rag_system.cleanup()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
def main():
"""Main entry point"""
try:
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Create and launch interface
interface = GradioInterface()
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0"
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
if __name__ == "__main__":
main() |