CodeMixt / app.py
acecalisto3's picture
Update app.py
a9df132 verified
raw
history blame
77.9 kB
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
AutoModel
)
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
from transformers import BlipForConditionalGeneration
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True)
@dataclass
class Template:
"""Template data structure"""
code: str
description: str
components: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
version: str = "1.0"
class ComponentType(Enum):
"""Supported Gradio component types"""
IMAGE = "Image"
TEXTBOX = "Textbox"
BUTTON = "Button"
NUMBER = "Number"
MARKDOWN = "Markdown"
JSON = "JSON"
HTML = "HTML"
CODE = "Code"
DROPDOWN = "Dropdown"
SLIDER = "Slider"
CHECKBOX = "Checkbox"
RADIO = "Radio"
AUDIO = "Audio"
VIDEO = "Video"
FILE = "File"
DATAFRAME = "DataFrame"
LABEL = "Label"
PLOT = "Plot"
@dataclass
class ComponentConfig:
"""Configuration for Gradio components"""
type: ComponentType
label: str
properties: Dict[str, Any] = field(default_factory=dict)
events: List[str] = field(default_factory=list)
class BuilderError(Exception):
"""Base exception for Gradio Builder errors"""
pass
class ValidationError(BuilderError):
"""Raised when validation fails"""
pass
class GenerationError(BuilderError):
"""Raised when code generation fails"""
pass
class ModelError(BuilderError):
"""Raised when model operations fail"""
pass
def setup_gpu_memory():
"""Configure GPU memory usage"""
try:
if torch.cuda.is_available():
# Enable memory growth
torch.cuda.empty_cache()
# Set memory fraction
torch.cuda.set_per_process_memory_fraction(0.8)
logger.info("GPU memory configured successfully")
else:
logger.info("No GPU available, using CPU")
except Exception as e:
logger.warning(f"Error configuring GPU memory: {e}")
def validate_code(code: str) -> Tuple[bool, str]:
"""Validate Python code syntax"""
try:
ast.parse(code)
return True, "Code is valid"
except SyntaxError as e:
line_no = e.lineno
offset = e.offset
line = e.text
if line:
pointer = " " * (offset - 1) + "^"
error_detail = f"\nLine {line_no}:\n{line}\n{pointer}"
else:
error_detail = f" at line {line_no}"
return False, f"Syntax error: {str(e)}{error_detail}"
except Exception as e:
return False, f"Validation error: {str(e)}"
class CodeFormatter:
"""Handles code formatting and cleanup"""
@staticmethod
def format_code(code: str) -> str:
"""Format code using black"""
try:
import black
return black.format_str(code, mode=black.FileMode())
except ImportError:
logger.warning("black not installed, returning unformatted code")
return code
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
@staticmethod
def cleanup_code(code: str) -> str:
"""Clean up generated code"""
# Remove any potential unsafe imports
unsafe_imports = ['os', 'subprocess', 'sys']
lines = code.split('\n')
cleaned_lines = []
for line in lines:
skip = False
for unsafe in unsafe_imports:
if f"import {unsafe}" in line or f"from {unsafe}" in line:
skip = True
break
if not skip:
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def create_temp_module(code: str) -> str:
"""Create a temporary module from code"""
try:
temp_file = TEMP_DIR / f"temp_module_{int(time.time())}.py"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(code)
return str(temp_file)
except Exception as e:
raise BuilderError(f"Failed to create temporary module: {e}")
# Initialize GPU configuration
setup_gpu_memory()
class ModelManager:
"""Manages AI models and their configurations"""
def __init__(self, cache_dir: Path = MODEL_CACHE_DIR):
self.cache_dir = cache_dir
self.cache_dir.mkdir(exist_ok=True)
self.loaded_models = {}
self.model_configs = {
"code_generator": {
"model_id": "bigcode/starcoder",
"tokenizer": AutoTokenizer,
"model": AutoModelForCausalLM,
"kwargs": {
"torch_dtype": torch.float16,
"device_map": "auto",
"cache_dir": str(cache_dir)
}
},
"image_processor": {
"model_id": "Salesforce/blip-image-captioning-base",
"processor": AutoProcessor,
"model": BlipForConditionalGeneration,
"kwargs": {
"cache_dir": str(cache_dir),
"device_map": "auto"
}
}
}
def load_model(self, model_type: str):
"""Load a model by type"""
try:
if model_type not in self.model_configs:
raise ModelError(f"Unknown model type: {model_type}")
if model_type in self.loaded_models:
return self.loaded_models[model_type]
config = self.model_configs[model_type]
logger.info(f"Loading {model_type} model...")
if model_type == "code_generator":
tokenizer = config["tokenizer"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, tokenizer)
elif model_type == "image_processor":
try:
processor = config["processor"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
if torch.cuda.is_available():
model = model.to("cuda")
self.loaded_models[model_type] = (model, processor)
logger.info(f"{model_type} model loaded successfully")
except Exception as e:
logger.error(f"Error loading {model_type} model: {e}")
raise ModelError(f"Failed to load {model_type} model: {e}")
logger.info(f"{model_type} model loaded successfully")
return self.loaded_models[model_type]
except Exception as e:
raise ModelError(f"Error loading {model_type} model: {str(e)}")
def unload_model(self, model_type: str):
"""Unload a model to free memory"""
if model_type in self.loaded_models:
del self.loaded_models[model_type]
torch.cuda.empty_cache()
logger.info(f"{model_type} model unloaded")
class MultimodalRAG:
"""Multimodal Retrieval-Augmented Generation system"""
def __init__(self):
"""Initialize the multimodal RAG system"""
try:
self.model_manager = ModelManager()
# Load text encoder
self.text_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize vector store
self.vector_store = self._initialize_vector_store()
# Load template database
self.template_embeddings = {}
self._initialize_template_embeddings()
except Exception as e:
raise ModelError(f"Error initializing MultimodalRAG: {str(e)}")
def _initialize_vector_store(self) -> faiss.IndexFlatL2:
"""Initialize FAISS vector store"""
combined_dim = 768 + 384 # BLIP (768) + text (384)
return faiss.IndexFlatL2(combined_dim)
def _initialize_template_embeddings(self):
"""Initialize template embeddings"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
if template_path.exists():
data = np.load(template_path)
self.template_embeddings = {
name: embedding for name, embedding in data.items()
}
except Exception as e:
logger.error(f"Error loading template embeddings: {e}")
def encode_image(self, image: Image.Image) -> np.ndarray:
"""Encode image using BLIP"""
try:
model, processor = self.model_manager.load_model("image_processor")
# Process image
inputs = processor(images=image, return_tensors="pt").to(model.device)
# Get image features using the proper method
with torch.no_grad():
outputs = model.get_image_features(**inputs)
image_features = outputs.last_hidden_state.mean(dim=1) # Average pooling
return image_features.cpu().numpy()
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise ModelError(f"Error encoding image: {str(e)}")
def encode_text(self, text: str) -> np.ndarray:
"""Encode text using sentence-transformers"""
try:
return self.text_encoder.encode(text)
except Exception as e:
raise ModelError(f"Error encoding text: {str(e)}")
# ... rest of the MultimodalRAG class methods ...
def generate_code(self, description: str, template_code: str) -> str:
"""Generate code using StarCoder"""
try:
model, tokenizer = self.model_manager.load_model("code_generator")
prompt = f"""
# Task: Generate a Gradio interface based on the description
# Description: {description}
# Base template:
{template_code}
# Generate a customized version of the template that implements the description.
# Only output the Python code, no explanations.
```python
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=2048,
temperature=0.2,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean and format the generated code
generated_code = self._clean_generated_code(generated_code)
return CodeFormatter.format_code(generated_code)
except Exception as e:
raise GenerationError(f"Error generating code: {str(e)}")
def _clean_generated_code(self, code: str) -> str:
"""Clean and format generated code"""
# Extract code between triple backticks if present
if "```python" in code:
code = code.split("```python")[1].split("```")[0]
elif "```" in code:
code = code.split("```")[1].split("```")[0]
code = code.strip()
return CodeFormatter.cleanup_code(code)
def find_similar_template(
self,
screenshot: Optional[Image.Image],
description: str
) -> Tuple[str, Template]:
"""Find most similar template based on image and description"""
try:
# Get embeddings
text_embedding = self.encode_text(description)
if screenshot:
img_embedding = self.encode_image(screenshot)
query_embedding = np.concatenate([
img_embedding.flatten(),
text_embedding
])
else:
# If no image, duplicate text embedding to match dimensions
query_embedding = np.concatenate([
text_embedding,
text_embedding
])
# Search in vector store
D, I = self.vector_store.search(
np.array([query_embedding]),
k=1
)
# Get template name from index
template_names = list(self.template_embeddings.keys())
template_name = template_names[I[0][0]]
# Load template
template_path = TEMPLATE_DIR / f"{template_name}.json"
with open(template_path, 'r') as f:
template_data = json.load(f)
template = Template(**template_data)
return template_name, template
except Exception as e:
raise ModelError(f"Error finding similar template: {str(e)}")
def generate_interface(
self,
screenshot: Optional[Image.Image],
description: str
) -> str:
"""Generate complete interface based on input"""
try:
# Find similar template
template_name, template = self.find_similar_template(
screenshot,
description
)
# Generate customized code
custom_code = self.generate_code(
description,
template.code
)
return custom_code
except Exception as e:
raise GenerationError(f"Error generating interface: {str(e)}")
def cleanup(self):
"""Cleanup resources"""
try:
# Save template embeddings
self.save_template_embeddings()
# Unload models
self.model_manager.unload_model("code_generator")
self.model_manager.unload_model("image_processor")
# Clear CUDA cache
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
class TemplateManager:
"""Manages Gradio interface templates"""
def __init__(self, template_dir: Path = TEMPLATE_DIR):
self.template_dir = template_dir
self.template_dir.mkdir(exist_ok=True)
self.templates: Dict[str, Template] = {}
self.load_templates()
def load_templates(self):
"""Load all templates from directory"""
try:
# Load built-in templates
self.templates.update(self._get_builtin_templates())
# Load custom templates
for template_file in self.template_dir.glob("*.json"):
try:
with open(template_file, 'r', encoding='utf-8') as f:
template_data = json.load(f)
name = template_file.stem
self.templates[name] = Template(**template_data)
except Exception as e:
logger.error(f"Error loading template {template_file}: {e}")
except Exception as e:
logger.error(f"Error loading templates: {e}")
def _get_builtin_templates(self) -> Dict[str, Template]:
"""Get built-in templates"""
return {
"image_classifier": Template(
code="""
import gradio as gr
import numpy as np
from PIL import Image
def classify_image(image):
if image is None:
return {"error": 1.0}
return {"class1": 0.8, "class2": 0.2}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Classifier")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
classify_btn = gr.Button("Classify")
with gr.Column():
output_labels = gr.Label()
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=output_labels
)
if __name__ == "__main__":
demo.launch()
""",
description="Basic image classification interface",
components=["Image", "Button", "Label"],
metadata={"category": "computer_vision"}
),
"chatbot": Template(
code="""
import gradio as gr
def respond(message, history):
return f"You said: {message}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message")
clear = gr.Button("Clear")
msg.submit(respond, [msg, chatbot], [chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
""",
description="Interactive chatbot interface",
components=["Chatbot", "Textbox", "Button"],
metadata={"category": "nlp"}
),
"audio_processor": Template(
code="""
import gradio as gr
import numpy as np
def process_audio(audio, volume_factor=1.0):
if audio is None:
return None
sr, data = audio
return (sr, data * volume_factor)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Audio Processor")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(source="microphone", type="numpy")
volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume")
process_btn = gr.Button("Process")
with gr.Column():
output_audio = gr.Audio(type="numpy")
process_btn.click(
fn=process_audio,
inputs=[input_audio, volume],
outputs=output_audio
)
if __name__ == "__main__":
demo.launch()
""",
description="Audio processing interface",
components=["Audio", "Slider", "Button"],
metadata={"category": "audio"}
),
"file_processor": Template(
code="""
import gradio as gr
def process_file(file):
if file is None:
return "No file uploaded"
return f"Processed file: {file.name}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Processor")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
process_btn = gr.Button("Process")
with gr.Column():
output = gr.Textbox(label="Results")
json_output = gr.JSON(label="Detailed Results")
process_btn.click(
fn=process_file,
inputs=file_input,
outputs=[output, json_output]
)
if __name__ == "__main__":
demo.launch()
""",
description="File processing interface",
components=["File", "Button", "Textbox", "JSON"],
metadata={"category": "utility"}
),
"data_visualization": Template(
code="""
import gradio as gr
import pandas as pd
import plotly.express as px
def visualize_data(data, plot_type):
if data is None:
return None
df = pd.read_csv(data.name)
if plot_type == "scatter":
fig = px.scatter(df, x=df.columns[0], y=df.columns[1])
elif plot_type == "line":
fig = px.line(df, x=df.columns[0], y=df.columns[1])
else:
fig = px.bar(df, x=df.columns[0], y=df.columns[1])
return fig
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Data Visualizer")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload CSV")
plot_type = gr.Radio(
choices=["scatter", "line", "bar"],
label="Plot Type",
value="scatter"
)
visualize_btn = gr.Button("Visualize")
with gr.Column():
plot_output = gr.Plot(label="Visualization")
visualize_btn.click(
fn=visualize_data,
inputs=[file_input, plot_type],
outputs=plot_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Data visualization interface",
components=["File", "Radio", "Button", "Plot"],
metadata={"category": "data_science"}
),
"form_builder": Template(
code="""
import gradio as gr
import json
def submit_form(name, email, age, interests, subscribe):
return json.dumps({
"name": name,
"email": email,
"age": age,
"interests": interests,
"subscribe": subscribe
}, indent=2)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Form Builder")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Name")
email = gr.Textbox(label="Email")
age = gr.Number(label="Age")
interests = gr.CheckboxGroup(
choices=["Sports", "Music", "Art", "Technology"],
label="Interests"
)
subscribe = gr.Checkbox(label="Subscribe to newsletter")
submit_btn = gr.Button("Submit")
with gr.Column():
output = gr.JSON(label="Form Data")
submit_btn.click(
fn=submit_form,
inputs=[name, email, age, interests, subscribe],
outputs=output
)
if __name__ == "__main__":
demo.launch()
""",
description="Form builder interface",
components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"],
metadata={"category": "utility"}
)
}
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
def _build_component_index(self) -> Dict[str, List[str]]:
"""Build index of templates by component"""
index = {}
for name, template in self.templates.items():
for component in template.components:
if component not in index:
index[component] = []
index[component].append(name)
return index
def _build_category_index(self) -> Dict[str, List[str]]:
"""Build index of templates by category"""
index = {}
for name, template in self.templates.items():
category = template.metadata.get("category", "other")
if category not in index:
index[category] = []
index[category].append(name)
return index
def search(self, query: str, limit: int = 5) -> List[Dict]:
"""Search templates by description or metadata"""
try:
results = []
for name, template in self.templates.items():
desc_score = difflib.SequenceMatcher(
None,
query.lower(),
template.description.lower()
).ratio()
category_score = difflib.SequenceMatcher(
None,
query.lower(),
template.metadata.get("category", "").lower()
).ratio()
comp_score = sum(0.2 for component in template.components if component.lower() in query.lower())
final_score = max(desc_score, category_score) + comp_score
results.append({
"name": name,
"template": template,
"score": final_score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching templates: {str(e)}")
return []
def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]:
"""Search templates by required components"""
try:
results = []
for name, template in self.templates.items():
matches = sum(1 for c in components if c in template.components)
if matches > 0:
score = matches / len(components)
results.append({
"name": name,
"template": template,
"score": score
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:limit]
except Exception as e:
logger.error(f"Error searching by components: {str(e)}")
return []
def search_by_category(self, category: str) -> List[Dict]:
"""Get all templates in a category"""
try:
return [
{
"name": name,
"template": self.templates[name]
}
for name in self.category_index.get(category, [])
]
except Exception as e:
logger.error(f"Error searching by category: {str(e)}")
return []
def get_template(self, name: str) -> Optional[Template]:
"""Get specific template by name"""
return self.templates.get(name)
def get_categories(self) -> List[str]:
"""Get list of all categories"""
return list(self.category_index.keys())
def get_components(self) -> List[str]:
"""Get list of all components"""
return list(self.component_index.keys())
def export_templates(self, path: str):
"""Export templates to JSON file"""
try:
data = {
name: {
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"example": template.example
}
for name, template in self.templates.items()
}
with open(path, 'w') as f:
json.dump(data, f, indent=2)
logger.info(f"Templates exported to {path}")
except Exception as e:
logger.error(f"Error exporting templates: {str(e)}")
raise
def import_templates(self, path: str):
"""Import templates from JSON file"""
try:
with open(path, 'r') as f:
data = json.load(f)
for name, template_data in data.items():
self.templates[name] = Template(
code="", # Code should be loaded separately
description=template_data["description"],
components=template_data["components"],
metadata=template_data["metadata"],
example=template_data.get("example")
)
# Rebuild indexes
self.component_index = self._build_component_index()
self.category_index = self._build_category_index()
logger.info(f"Templates imported from {path}")
except Exception as e:
logger.error(f"Error importing templates: {str(e)}")
raise
# Usage example:
if __name__ == "__main__":
# Initialize template manager
manager = TemplateManager()
# Search examples
print("\nSearching for 'machine learning':")
results = manager.search("machine learning")
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nSearching for components ['Image', 'Slider']:")
results = manager.search_by_components(['Image', 'Slider'])
for result in results:
print(f"{result['name']}: {result['score']:.2f}")
print("\nCategories available:")
print(manager.get_categories())
print("\nComponents available:")
print(manager.get_components())
"text_summarizer": Template(
code="""
import gradio as gr
from transformers import pipeline
summarizer = pipeline("summarization")
def summarize_text(text):
summary = summarizer(text, max_length=150, min_length=40, do_sample=False)
return summary[0]['summary_text']
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text Summarizer")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...")
summarize_btn = gr.Button("Summarize")
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=5)
summarize_btn.click(
fn=summarize_text,
inputs=input_text,
outputs=summary_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Text summarization interface using a transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"image_captioner": Template(
code="""
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Caption Generator")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
caption_btn = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Textbox(label="Generated Caption")
caption_btn.click(
fn=generate_caption,
inputs=input_image,
outputs=caption_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Image captioning interface using a transformer model",
components=["Image", "Button", "Textbox"],
metadata={"category": "computer_vision"}
),
"style_transfer": Template(
code="""
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def apply_style(content_image, style_image):
content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...]
style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...]
stylized_image = hub_model(content_image, style_image)[0]
return tf.squeeze(stylized_image).numpy()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Neural Style Transfer")
with gr.Row():
with gr.Column():
content_image = gr.Image(label="Content Image")
style_image = gr.Image(label="Style Image")
transfer_btn = gr.Button("Transfer Style")
with gr.Column():
output_image = gr.Image(label="Stylized Image")
transfer_btn.click(
fn=apply_style,
inputs=[content_image, style_image],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()
""",
description="Neural style transfer between two images",
components=["Image", "Button"],
metadata={"category": "computer_vision"}
),
"sentiment_analysis": Template(
code="""
import gradio as gr
from transformers import pipeline
sentiment_pipeline = pipeline("sentiment-analysis")
def analyze_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"{result['label']} ({result['score']:.2f})"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Sentiment Analysis")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...")
analyze_btn = gr.Button("Analyze Sentiment")
with gr.Column():
sentiment_output = gr.Textbox(label="Sentiment Result")
analyze_btn.click(
fn=analyze_sentiment,
inputs=input_text,
outputs=sentiment_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Sentiment analysis using transformer model",
components=["Textbox", "Button"],
metadata={"category": "nlp"}
),
"pdf_to_text": Template(
code="""
import gradio as gr
import PyPDF2
def extract_text_from_pdf(pdf):
reader = PyPDF2.PdfFileReader(pdf)
text = ''
for page_num in range(reader.numPages):
page = reader.getPage(page_num)
text += page.extract_text()
return text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# PDF to Text Extractor")
with gr.Row():
with gr.Column():
pdf_file = gr.File(label="Upload PDF")
extract_btn = gr.Button("Extract Text")
with gr.Column():
output_text = gr.Textbox(label="Extracted Text", lines=10)
extract_btn.click(
fn=extract_text_from_pdf,
inputs=pdf_file,
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
""",
description="Extract text from PDF files",
components=["File", "Button", "Textbox"],
metadata={"category": "utility"}
)
"website_monitor": Template(
code="""
import gradio as gr
import requests
from datetime import datetime
def monitor_website(url):
try:
response = requests.get(url)
status_code = response.status_code
status = "Up" if status_code == 200 else "Down"
return {
"url": url,
"status": status,
"response_time": response.elapsed.total_seconds(),
"last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Website Uptime Monitor")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
check_btn = gr.Button("Check Website")
with gr.Column():
result_output = gr.JSON(label="Monitoring Result")
check_btn.click(
fn=monitor_website,
inputs=url_input,
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Monitor the uptime and response time of a website",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_monitoring"}
),
"rss_feed_fetcher": Template(
code="""
import gradio as gr
import feedparser
def fetch_rss_feed(url):
feed = feedparser.parse(url)
if feed.bozo:
return {"error": "Invalid RSS feed URL"}
return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# RSS Feed Fetcher")
with gr.Row():
with gr.Column():
feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed")
fetch_btn = gr.Button("Fetch Latest Posts")
with gr.Column():
feed_output = gr.JSON(label="Latest Feed Entries")
fetch_btn.click(
fn=fetch_rss_feed,
inputs=feed_url,
outputs=feed_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Fetch the latest entries from an RSS feed",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"web_scraper": Template(
code="""
import gradio as gr
from bs4 import BeautifulSoup
import requests
def scrape_website(url, tag):
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
elements = soup.find_all(tag)
return [element.get_text() for element in elements][:5] # Limit to 5 elements
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Web Scraper")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(label="Website URL", placeholder="https://example.com")
tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.")
scrape_btn = gr.Button("Scrape Website")
with gr.Column():
result_output = gr.JSON(label="Scraped Results")
scrape_btn.click(
fn=scrape_website,
inputs=[url_input, tag_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Scrape text from a website based on the specified HTML tag",
components=["Textbox", "Button", "JSON"],
metadata={"category": "web_scraping"}
),
"api_tester": Template(
code="""
import gradio as gr
import requests
def test_api(endpoint, method, payload):
try:
if method == "GET":
response = requests.get(endpoint)
elif method == "POST":
response = requests.post(endpoint, json=payload)
else:
return "Unsupported method"
return {
"status_code": response.status_code,
"response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text
}
except Exception as e:
return {"error": str(e)}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# API Tester")
with gr.Row():
with gr.Column():
endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint")
method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET")
payload = gr.JSON(label="Payload (for POST)", value={})
test_btn = gr.Button("Test API")
with gr.Column():
result_output = gr.JSON(label="API Response")
test_btn.click(
fn=test_api,
inputs=[endpoint, method, payload],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Test API endpoints with GET and POST requests",
components=["Textbox", "Radio", "JSON", "Button"],
metadata={"category": "api_testing"}
),
"email_scheduler": Template(
code="""
import gradio as gr
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler()
scheduler.start()
def send_email(to_email, subject, body):
try:
sender_email = "[email protected]"
password = "your_password"
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = to_email
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login(sender_email, password)
text = msg.as_string()
server.sendmail(sender_email, to_email, text)
server.quit()
return "Email sent successfully"
except Exception as e:
return f"Error: {str(e)}"
def schedule_email(to_email, subject, body, delay):
scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body])
return f"Email scheduled to be sent in {delay} seconds"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Email Scheduler")
with gr.Row():
with gr.Column():
to_email = gr.Textbox(label="Recipient Email")
subject = gr.Textbox(label="Subject")
body = gr.Textbox(label="Email Body", lines=5)
delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60)
schedule_btn = gr.Button("Schedule Email")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_email,
inputs=[to_email, subject, body, delay],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule emails to be sent after a delay",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
)
"log_file_analyzer": Template(
code="""
import gradio as gr
import re
def analyze_logs(log_file, filter_text):
try:
logs = log_file.read().decode("utf-8")
if filter_text:
filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)])
else:
filtered_logs = logs
return filtered_logs
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Log File Analyzer")
with gr.Row():
with gr.Column():
log_input = gr.File(label="Upload Log File")
filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning")
analyze_btn = gr.Button("Analyze Logs")
with gr.Column():
output_logs = gr.Textbox(label="Filtered Logs", lines=20)
analyze_btn.click(
fn=analyze_logs,
inputs=[log_input, filter_input],
outputs=output_logs
)
if __name__ == "__main__":
demo.launch()
""",
description="Analyze and filter log files using regex",
components=["File", "Textbox", "Button"],
metadata={"category": "log_analysis"}
),
"file_encryption_tool": Template(
code="""
import gradio as gr
from cryptography.fernet import Fernet
def encrypt_file(file, password):
try:
key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping
cipher = Fernet(Fernet.generate_key())
file_data = file.read()
encrypted_data = cipher.encrypt(file_data)
return encrypted_data.decode("utf-8")
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# File Encryption Tool")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload File")
password_input = gr.Textbox(label="Password", type="password")
encrypt_btn = gr.Button("Encrypt File")
with gr.Column():
encrypted_output = gr.Textbox(label="Encrypted Data", lines=20)
encrypt_btn.click(
fn=encrypt_file,
inputs=[file_input, password_input],
outputs=encrypted_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Encrypt a file using a password-based key",
components=["File", "Textbox", "Button"],
metadata={"category": "security"}
),
"task_scheduler": Template(
code="""
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
scheduler = BackgroundScheduler()
scheduler.start()
def schedule_task(task_name, interval):
scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval)
return f"Task '{task_name}' scheduled to run every {interval} seconds."
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Task Scheduler")
with gr.Row():
with gr.Column():
task_input = gr.Textbox(label="Task Name", placeholder="Example Task")
interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10)
schedule_btn = gr.Button("Schedule Task")
with gr.Column():
result_output = gr.Textbox(label="Result")
schedule_btn.click(
fn=schedule_task,
inputs=[task_input, interval_input],
outputs=result_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Schedule tasks to run at regular intervals",
components=["Textbox", "Slider", "Button"],
metadata={"category": "task_automation"}
),
"code_comparator": Template(
code="""
import gradio as gr
import difflib
def compare_code(code1, code2):
diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2')
return '\n'.join(diff)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Code Comparator")
with gr.Row():
with gr.Column():
code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...")
code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...")
compare_btn = gr.Button("Compare Codes")
with gr.Column():
diff_output = gr.Textbox(label="Difference", lines=20)
compare_btn.click(
fn=compare_code,
inputs=[code1_input, code2_input],
outputs=diff_output
)
if __name__ == "__main__":
demo.launch()
""",
description="Compare two code snippets and show the differences",
components=["Textbox", "Button"],
metadata={"category": "development"}
),
"database_query_tool": Template(
code="""
import gradio as gr
import sqlite3
def query_database(db_file, query):
try:
conn = sqlite3.connect(db_file.name)
cursor = conn.cursor()
cursor.execute(query)
results = cursor.fetchall()
conn.close()
return results
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Database Query Tool")
with gr.Row():
with gr.Column():
db_input = gr.File(label="Upload SQLite DB File")
query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;")
}
def save_template(self, name: str, template: Template) -> bool:
"""Save new template"""
try:
template_path = self.template_dir / f"{name}.json"
template_dict = {
"code": template.code,
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"version": template.version
}
with open(template_path, 'w', encoding='utf-8') as f:
json.dump(template_dict, f, indent=4)
self.templates[name] = template
return True
except Exception as e:
logger.error(f"Error saving template {name}: {e}")
return False
def get_template(self, name: str) -> Optional[Template]:
"""Get template by name"""
return self.templates.get(name)
def list_templates(self, category: Optional[str] = None) -> List[Dict[str, Any]]:
"""List all available templates with optional category filter"""
templates_list = []
for name, template in self.templates.items():
if category and template.metadata.get("category") != category:
continue
templates_list.append({
"name": name,
"description": template.description,
"components": template.components,
"category": template.metadata.get("category", "general")
})
return templates_list
class InterfaceAnalyzer:
"""Analyzes Gradio interfaces"""
@staticmethod
def extract_components(code: str) -> List[ComponentConfig]:
"""Extract components from code"""
components = []
try:
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == 'gr':
component_type = node.func.attr
if hasattr(ComponentType, component_type.upper()):
# Extract component properties
properties = {}
label = None
events = []
# Get properties from keywords
for keyword in node.keywords:
if keyword.arg == 'label':
try:
label = ast.literal_eval(keyword.value)
except:
label = None
else:
try:
properties[keyword.arg] = ast.literal_eval(keyword.value)
except:
properties[keyword.arg] = None
# Look for event handlers
parent = InterfaceAnalyzer._find_parent_assign(tree, node)
if parent:
events = InterfaceAnalyzer._find_component_events(tree, parent)
components.append(ComponentConfig(
type=ComponentType[component_type.upper()],
label=label or component_type,
properties=properties,
events=events
))
except Exception as e:
logger.error(f"Error extracting components: {e}")
return components
@staticmethod
def _find_parent_assign(tree: ast.AST, node: ast.Call) -> Optional[ast.AST]:
"""Find the assignment node for a component"""
for potential_parent in ast.walk(tree):
if isinstance(potential_parent, ast.Assign):
for child in ast.walk(potential_parent.value):
if child == node:
return potential_parent
return None
@staticmethod
def _find_component_events(tree: ast.AST, assign_node: ast.Assign) -> List[str]:
"""Find events attached to a component"""
events = []
component_name = assign_node.targets[0].id
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == component_name:
events.append(node.func.attr)
return events
@staticmethod
def analyze_interface_structure(code: str) -> Dict[str, Any]:
"""Analyze interface structure"""
try:
# Extract components
components = InterfaceAnalyzer.extract_components(code)
# Analyze functions
functions = []
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
functions.append({
"name": node.name,
"args": [arg.arg for arg in node.args.args],
"returns": InterfaceAnalyzer._get_return_type(node)
})
# Analyze dependencies
dependencies = set()
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
dependencies.add(name.name)
elif isinstance(node, ast.ImportFrom):
if node.module:
dependencies.add(node.module)
return {
"components": [
{
"type": comp.type.value,
"label": comp.label,
"properties": comp.properties,
"events": comp.events
}
for comp in components
],
"functions": functions,
"dependencies": list(dependencies)
}
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}
@staticmethod
def _get_return_type(node: ast.FunctionDef) -> str:
"""Get function return type if specified"""
if node.returns:
return ast.unparse(node.returns)
return "Any"
class PreviewManager:
"""Manages interface previews"""
def __init__(self):
self.current_process: Optional[subprocess.Popen] = None
self.preview_port = DEFAULT_PORT
self._lock = threading.Lock()
def start_preview(self, code: str) -> Tuple[bool, str]:
"""Start preview in a separate process"""
with self._lock:
try:
self.stop_preview()
# Create temporary module
module_path = create_temp_module(code)
# Start new process
self.current_process = subprocess.Popen(
['python', module_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# Wait for server to start
time.sleep(2)
# Check if process is still running
if self.current_process.poll() is not None:
stdout, stderr = self.current_process.communicate()
error_msg = stderr.decode('utf-8')
raise RuntimeError(f"Preview failed to start: {error_msg}")
return True, f"http://localhost:{self.preview_port}"
except Exception as e:
return False, str(e)
def stop_preview(self):
"""Stop current preview process"""
if self.current_process:
self.current_process.terminate()
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
self.current_process.kill()
self.current_process = None
def cleanup(self):
"""Cleanup resources"""
self.stop_preview()
# Clean up temporary files
for temp_file in TEMP_DIR.glob("*.py"):
try:
temp_file.unlink()
except Exception as e:
logger.error(f"Error deleting temporary file {temp_file}: {e}")
class GradioInterface:
"""Main Gradio interface builder class"""
def __init__(self):
"""Initialize the Gradio interface builder"""
try:
self.rag_system = MultimodalRAG()
self.template_manager = TemplateManager()
self.preview_manager = PreviewManager()
self.current_code = ""
self.error_log = []
self.interface = self._create_interface()
except Exception as e:
logger.error(f"Error initializing GradioInterface: {str(e)}")
raise
def _create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# 🚀 Gradio Interface Builder")
with gr.Tabs():
# Design Tab
with gr.Tab("Design"):
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## 📝 Design Your Interface")
description = gr.Textbox(
label="Description",
placeholder="Describe the interface you want to create...",
lines=3
)
screenshot = gr.Image(
label="Screenshot (optional)",
type="pil"
)
with gr.Row():
generate_btn = gr.Button("🎨 Generate Interface", variant="primary")
clear_btn = gr.Button("🗑️ Clear")
# Template Selection
gr.Markdown("### 📚 Templates")
template_dropdown = gr.Dropdown(
choices=self._get_template_choices(),
label="Base Template",
interactive=True
)
with gr.Column(scale=3):
# Code Editor
code_editor = gr.Code(
label="Generated Code",
language="python",
interactive=True
)
with gr.Row():
validate_btn = gr.Button("✅ Validate")
format_btn = gr.Button("📋 Format")
save_template_btn = gr.Button("💾 Save as Template")
validation_output = gr.Markdown()
# Preview Tab
with gr.Tab("Preview"):
with gr.Row():
preview_btn = gr.Button("▶️ Start Preview", variant="primary")
stop_preview_btn = gr.Button("⏹️ Stop Preview")
preview_frame = gr.HTML(
label="Preview",
value="<p>Click 'Start Preview' to see your interface</p>"
)
preview_status = gr.Markdown()
# Analysis Tab
with gr.Tab("Analysis"):
analyze_btn = gr.Button("🔍 Analyze Interface")
with gr.Row():
with gr.Column():
gr.Markdown("### 🧩 Components")
components_json = gr.JSON(label="Detected Components")
with gr.Column():
gr.Markdown("### 🔄 Functions")
functions_json = gr.JSON(label="Interface Functions")
with gr.Row():
with gr.Column():
gr.Markdown("### 📦 Dependencies")
dependencies_json = gr.JSON(label="Required Dependencies")
with gr.Column():
gr.Markdown("### 📄 Requirements")
requirements_text = gr.Textbox(
label="requirements.txt",
lines=10
)
# Event handlers
generate_btn.click(
fn=self._generate_interface,
inputs=[description, screenshot, template_dropdown],
outputs=[code_editor, validation_output]
)
clear_btn.click(
fn=self._clear_interface,
outputs=[description, screenshot, code_editor, validation_output]
)
validate_btn.click(
fn=self._validate_code,
inputs=[code_editor],
outputs=[validation_output]
)
format_btn.click(
fn=self._format_code,
inputs=[code_editor],
outputs=[code_editor]
)
save_template_btn.click(
fn=self._save_as_template,
inputs=[code_editor, description],
outputs=[template_dropdown, validation_output]
)
preview_btn.click(
fn=self._start_preview,
inputs=[code_editor],
outputs=[preview_frame, preview_status]
)
stop_preview_btn.click(
fn=self._stop_preview,
outputs=[preview_frame, preview_status]
)
analyze_btn.click(
fn=self._analyze_interface,
inputs=[code_editor],
outputs=[
components_json,
functions_json,
dependencies_json,
requirements_text
]
)
# Update template dropdown when templates change
template_dropdown.change(
fn=self._load_template,
inputs=[template_dropdown],
outputs=[code_editor]
)
return interface
def _get_template_choices(self) -> List[str]:
"""Get list of available templates"""
templates = self.template_manager.list_templates()
return [""] + [t["name"] for t in templates]
def _generate_interface(
self,
description: str,
screenshot: Optional[Image.Image],
template_name: str
) -> Tuple[str, str]:
"""Generate interface code"""
try:
if template_name:
template = self.template_manager.get_template(template_name)
if template:
code = self.rag_system.generate_code(description, template.code)
else:
raise ValueError(f"Template {template_name} not found")
else:
code = self.rag_system.generate_interface(screenshot, description)
self.current_code = code
return code, "✅ Code generated successfully"
except Exception as e:
error_msg = f"❌ Error generating interface: {str(e)}"
logger.error(error_msg)
return "", error_msg
def _clear_interface(self) -> Tuple[str, None, str, str]:
"""Clear all inputs and outputs"""
self.current_code = ""
return "", None, "", ""
def _validate_code(self, code: str) -> str:
"""Validate code syntax"""
is_valid, message = validate_code(code)
return f"{'✅' if is_valid else '❌'} {message}"
def _format_code(self, code: str) -> str:
"""Format code"""
try:
return CodeFormatter.format_code(code)
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
def _save_as_template(self, code: str, description: str) -> Tuple[List[str], str]:
"""Save current code as template"""
try:
# Generate template name
base_name = "custom_template"
counter = 1
name = base_name
while self.template_manager.get_template(name):
name = f"{base_name}_{counter}"
counter += 1
# Create template
template = Template(
code=code,
description=description,
components=InterfaceAnalyzer.extract_components(code),
metadata={"category": "custom"}
)
# Save template
if self.template_manager.save_template(name, template):
return self._get_template_choices(), f"✅ Template saved as {name}"
else:
raise Exception("Failed to save template")
except Exception as e:
error_msg = f"❌ Error saving template: {str(e)}"
logger.error(error_msg)
return self._get_template_choices(), error_msg
def _start_preview(self, code: str) -> Tuple[str, str]:
"""Start interface preview"""
success, result = self.preview_manager.start_preview(code)
if success:
return f'<iframe src="{result}" width="100%" height="600px"></iframe>', "✅ Preview started"
else:
return "", f"❌ Preview failed: {result}"
def _stop_preview(self) -> Tuple[str, str]:
"""Stop interface preview"""
self.preview_manager.stop_preview()
return "<p>Preview stopped</p>", "✅ Preview stopped"
def _load_template(self, template_name: str) -> str:
"""Load selected template"""
if not template_name:
return ""
template = self.template_manager.get_template(template_name)
if template:
return template.code
return ""
def _analyze_interface(self, code: str) -> Tuple[Dict, Dict, Dict, str]:
"""Analyze interface structure"""
try:
analysis = InterfaceAnalyzer.analyze_interface_structure(code)
# Generate requirements.txt
dependencies = analysis.get("dependencies", [])
requirements = CodeGenerator.generate_requirements(dependencies)
return (
analysis.get("components", {}),
analysis.get("functions", {}),
{"dependencies": dependencies},
requirements
)
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}, {}, {}, ""
def launch(self, **kwargs):
"""Launch the interface"""
try:
self.interface.launch(**kwargs)
finally:
self.cleanup()
def cleanup(self):
"""Cleanup resources"""
try:
self.preview_manager.cleanup()
self.rag_system.cleanup()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
def main():
"""Main entry point"""
try:
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Create and launch interface
interface = GradioInterface()
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0"
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
if __name__ == "__main__":
main()