CodeMixt / app.py
acecalisto3's picture
Update app.py
69477b6 verified
raw
history blame
41.1 kB
import threading
import time
import gradio as gr
import logging
import json
import re
import torch
import tempfile
import subprocess
import ast
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Any, Union
from dataclasses import dataclass, field
from enum import Enum
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
AutoModel
)
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('gradio_builder.log')
]
)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_PORT = 7860
MODEL_CACHE_DIR = Path("model_cache")
TEMPLATE_DIR = Path("templates")
TEMP_DIR = Path("temp")
# Ensure directories exist
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
directory.mkdir(exist_ok=True)
@dataclass
class Template:
"""Template data structure"""
code: str
description: str
components: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
version: str = "1.0"
class ComponentType(Enum):
"""Supported Gradio component types"""
IMAGE = "Image"
TEXTBOX = "Textbox"
BUTTON = "Button"
NUMBER = "Number"
MARKDOWN = "Markdown"
JSON = "JSON"
HTML = "HTML"
CODE = "Code"
DROPDOWN = "Dropdown"
SLIDER = "Slider"
CHECKBOX = "Checkbox"
RADIO = "Radio"
AUDIO = "Audio"
VIDEO = "Video"
FILE = "File"
DATAFRAME = "DataFrame"
LABEL = "Label"
PLOT = "Plot"
@dataclass
class ComponentConfig:
"""Configuration for Gradio components"""
type: ComponentType
label: str
properties: Dict[str, Any] = field(default_factory=dict)
events: List[str] = field(default_factory=list)
class BuilderError(Exception):
"""Base exception for Gradio Builder errors"""
pass
class ValidationError(BuilderError):
"""Raised when validation fails"""
pass
class GenerationError(BuilderError):
"""Raised when code generation fails"""
pass
class ModelError(BuilderError):
"""Raised when model operations fail"""
pass
def setup_gpu_memory():
"""Configure GPU memory usage"""
try:
if torch.cuda.is_available():
# Enable memory growth
torch.cuda.empty_cache()
# Set memory fraction
torch.cuda.set_per_process_memory_fraction(0.8)
logger.info("GPU memory configured successfully")
else:
logger.info("No GPU available, using CPU")
except Exception as e:
logger.warning(f"Error configuring GPU memory: {e}")
def validate_code(code: str) -> Tuple[bool, str]:
"""Validate Python code syntax"""
try:
ast.parse(code)
return True, "Code is valid"
except SyntaxError as e:
line_no = e.lineno
offset = e.offset
line = e.text
if line:
pointer = " " * (offset - 1) + "^"
error_detail = f"\nLine {line_no}:\n{line}\n{pointer}"
else:
error_detail = f" at line {line_no}"
return False, f"Syntax error: {str(e)}{error_detail}"
except Exception as e:
return False, f"Validation error: {str(e)}"
class CodeFormatter:
"""Handles code formatting and cleanup"""
@staticmethod
def format_code(code: str) -> str:
"""Format code using black"""
try:
import black
return black.format_str(code, mode=black.FileMode())
except ImportError:
logger.warning("black not installed, returning unformatted code")
return code
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
@staticmethod
def cleanup_code(code: str) -> str:
"""Clean up generated code"""
# Remove any potential unsafe imports
unsafe_imports = ['os', 'subprocess', 'sys']
lines = code.split('\n')
cleaned_lines = []
for line in lines:
skip = False
for unsafe in unsafe_imports:
if f"import {unsafe}" in line or f"from {unsafe}" in line:
skip = True
break
if not skip:
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
def create_temp_module(code: str) -> str:
"""Create a temporary module from code"""
try:
temp_file = TEMP_DIR / f"temp_module_{int(time.time())}.py"
with open(temp_file, "w", encoding="utf-8") as f:
f.write(code)
return str(temp_file)
except Exception as e:
raise BuilderError(f"Failed to create temporary module: {e}")
# Initialize GPU configuration
setup_gpu_memory()
class ModelManager:
"""Manages AI models and their configurations"""
def __init__(self, cache_dir: Path = MODEL_CACHE_DIR):
self.cache_dir = cache_dir
self.cache_dir.mkdir(exist_ok=True)
self.loaded_models = {}
self.model_configs = {
"code_generator": {
"model_id": "bigcode/starcoder",
"tokenizer": AutoTokenizer,
"model": AutoModelForCausalLM,
"kwargs": {
"torch_dtype": torch.float16,
"device_map": "auto",
"cache_dir": str(cache_dir)
}
},
"image_processor": {
"model_id": "Salesforce/blip-image-captioning-base",
"processor": AutoProcessor,
"model": AutoModel,
"kwargs": {
"cache_dir": str(cache_dir)
}
}
}
def load_model(self, model_type: str):
"""Load a model by type"""
try:
if model_type not in self.model_configs:
raise ModelError(f"Unknown model type: {model_type}")
if model_type in self.loaded_models:
return self.loaded_models[model_type]
config = self.model_configs[model_type]
logger.info(f"Loading {model_type} model...")
if model_type == "code_generator":
tokenizer = config["tokenizer"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, tokenizer)
elif model_type == "image_processor":
processor = config["processor"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
model = config["model"].from_pretrained(
config["model_id"],
**config["kwargs"]
)
self.loaded_models[model_type] = (model, processor)
logger.info(f"{model_type} model loaded successfully")
return self.loaded_models[model_type]
except Exception as e:
raise ModelError(f"Error loading {model_type} model: {str(e)}")
def unload_model(self, model_type: str):
"""Unload a model to free memory"""
if model_type in self.loaded_models:
del self.loaded_models[model_type]
torch.cuda.empty_cache()
logger.info(f"{model_type} model unloaded")
class MultimodalRAG:
"""Multimodal Retrieval-Augmented Generation system"""
def __init__(self):
"""Initialize the multimodal RAG system"""
try:
self.model_manager = ModelManager()
# Load text encoder
self.text_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize vector store
self.vector_store = self._initialize_vector_store()
# Load template database
self.template_embeddings = {}
self._initialize_template_embeddings()
except Exception as e:
raise ModelError(f"Error initializing MultimodalRAG: {str(e)}")
def _initialize_vector_store(self) -> faiss.IndexFlatL2:
"""Initialize FAISS vector store"""
combined_dim = 768 + 384 # BLIP (768) + text (384)
return faiss.IndexFlatL2(combined_dim)
def _initialize_template_embeddings(self):
"""Initialize template embeddings"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
if template_path.exists():
data = np.load(template_path)
self.template_embeddings = {
name: embedding for name, embedding in data.items()
}
except Exception as e:
logger.error(f"Error loading template embeddings: {e}")
def save_template_embeddings(self):
"""Save template embeddings to disk"""
try:
template_path = TEMPLATE_DIR / "template_embeddings.npz"
np.savez(
template_path,
**self.template_embeddings
)
except Exception as e:
logger.error(f"Error saving template embeddings: {e}")
def encode_image(self, image: Image.Image) -> np.ndarray:
"""Encode image using BLIP"""
try:
model, processor = self.model_manager.load_model("image_processor")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
image_features = model.get_image_features(**inputs)
return image_features.detach().numpy()
except Exception as e:
raise ModelError(f"Error encoding image: {str(e)}")
def encode_text(self, text: str) -> np.ndarray:
"""Encode text using sentence-transformers"""
try:
return self.text_encoder.encode(text)
except Exception as e:
raise ModelError(f"Error encoding text: {str(e)}")
def generate_code(self, description: str, template_code: str) -> str:
"""Generate code using StarCoder"""
try:
model, tokenizer = self.model_manager.load_model("code_generator")
prompt = f"""
# Task: Generate a Gradio interface based on the description
# Description: {description}
# Base template:
{template_code}
# Generate a customized version of the template that implements the description.
# Only output the Python code, no explanations.
```python
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=2048,
temperature=0.2,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean and format the generated code
generated_code = self._clean_generated_code(generated_code)
return CodeFormatter.format_code(generated_code)
except Exception as e:
raise GenerationError(f"Error generating code: {str(e)}")
def _clean_generated_code(self, code: str) -> str:
"""Clean and format generated code"""
# Extract code between triple backticks if present
if "```python" in code:
code = code.split("```python")[1].split("```")[0]
elif "```" in code:
code = code.split("```")[1].split("```")[0]
code = code.strip()
return CodeFormatter.cleanup_code(code)
def find_similar_template(
self,
screenshot: Optional[Image.Image],
description: str
) -> Tuple[str, Template]:
"""Find most similar template based on image and description"""
try:
# Get embeddings
text_embedding = self.encode_text(description)
if screenshot:
img_embedding = self.encode_image(screenshot)
query_embedding = np.concatenate([
img_embedding.flatten(),
text_embedding
])
else:
# If no image, duplicate text embedding to match dimensions
query_embedding = np.concatenate([
text_embedding,
text_embedding
])
# Search in vector store
D, I = self.vector_store.search(
np.array([query_embedding]),
k=1
)
# Get template name from index
template_names = list(self.template_embeddings.keys())
template_name = template_names[I[0][0]]
# Load template
template_path = TEMPLATE_DIR / f"{template_name}.json"
with open(template_path, 'r') as f:
template_data = json.load(f)
template = Template(**template_data)
return template_name, template
except Exception as e:
raise ModelError(f"Error finding similar template: {str(e)}")
def generate_interface(
self,
screenshot: Optional[Image.Image],
description: str
) -> str:
"""Generate complete interface based on input"""
try:
# Find similar template
template_name, template = self.find_similar_template(
screenshot,
description
)
# Generate customized code
custom_code = self.generate_code(
description,
template.code
)
return custom_code
except Exception as e:
raise GenerationError(f"Error generating interface: {str(e)}")
def cleanup(self):
"""Cleanup resources"""
try:
# Save template embeddings
self.save_template_embeddings()
# Unload models
self.model_manager.unload_model("code_generator")
self.model_manager.unload_model("image_processor")
# Clear CUDA cache
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
class TemplateManager:
"""Manages Gradio interface templates"""
def __init__(self, template_dir: Path = TEMPLATE_DIR):
self.template_dir = template_dir
self.template_dir.mkdir(exist_ok=True)
self.templates: Dict[str, Template] = {}
self.load_templates()
def load_templates(self):
"""Load all templates from directory"""
try:
# Load built-in templates
self.templates.update(self._get_builtin_templates())
# Load custom templates
for template_file in self.template_dir.glob("*.json"):
try:
with open(template_file, 'r', encoding='utf-8') as f:
template_data = json.load(f)
name = template_file.stem
self.templates[name] = Template(**template_data)
except Exception as e:
logger.error(f"Error loading template {template_file}: {e}")
except Exception as e:
logger.error(f"Error loading templates: {e}")
def _get_builtin_templates(self) -> Dict[str, Template]:
"""Get built-in templates"""
return {
"image_classifier": Template(
code="""
import gradio as gr
import numpy as np
from PIL import Image
def classify_image(image):
if image is None:
return {"error": 1.0}
# Add classification logic here
return {"class1": 0.8, "class2": 0.2}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Image Classifier")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
classify_btn = gr.Button("Classify")
with gr.Column():
output_labels = gr.Label()
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=output_labels
)
if __name__ == "__main__":
demo.launch()
""",
description="Basic image classification interface",
components=["Image", "Button", "Label"],
metadata={"category": "computer_vision"}
),
"text_analyzer": Template(
code="""
import gradio as gr
import numpy as np
def analyze_text(text, options):
if not text:
return "Please enter some text"
results = []
if "word_count" in options:
results.append(f"Word count: {len(text.split())}")
if "char_count" in options:
results.append(f"Character count: {len(text)}")
if "sentiment" in options:
# Add sentiment analysis logic here
results.append("Sentiment: Neutral")
return "\\n".join(results)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Text Analysis Tool")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=5
)
options = gr.CheckboxGroup(
choices=["word_count", "char_count", "sentiment"],
label="Analysis Options",
value=["word_count"]
)
analyze_btn = gr.Button("Analyze")
with gr.Column():
output_text = gr.Textbox(
label="Analysis Results",
lines=5
)
analyze_btn.click(
fn=analyze_text,
inputs=[input_text, options],
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
""",
description="Text analysis interface with multiple options",
components=["Textbox", "CheckboxGroup", "Button"],
metadata={"category": "nlp"}
)
}
def save_template(self, name: str, template: Template) -> bool:
"""Save new template"""
try:
template_path = self.template_dir / f"{name}.json"
template_dict = {
"code": template.code,
"description": template.description,
"components": template.components,
"metadata": template.metadata,
"version": template.version
}
with open(template_path, 'w', encoding='utf-8') as f:
json.dump(template_dict, f, indent=4)
self.templates[name] = template
return True
except Exception as e:
logger.error(f"Error saving template {name}: {e}")
return False
def get_template(self, name: str) -> Optional[Template]:
"""Get template by name"""
return self.templates.get(name)
def list_templates(self, category: Optional[str] = None) -> List[Dict[str, Any]]:
"""List all available templates with optional category filter"""
templates_list = []
for name, template in self.templates.items():
if category and template.metadata.get("category") != category:
continue
templates_list.append({
"name": name,
"description": template.description,
"components": template.components,
"category": template.metadata.get("category", "general")
})
return templates_list
class InterfaceAnalyzer:
"""Analyzes Gradio interfaces"""
@staticmethod
def extract_components(code: str) -> List[ComponentConfig]:
"""Extract components from code"""
components = []
try:
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == 'gr':
component_type = node.func.attr
if hasattr(ComponentType, component_type.upper()):
# Extract component properties
properties = {}
label = None
events = []
# Get properties from keywords
for keyword in node.keywords:
if keyword.arg == 'label':
try:
label = ast.literal_eval(keyword.value)
except:
label = None
else:
try:
properties[keyword.arg] = ast.literal_eval(keyword.value)
except:
properties[keyword.arg] = None
# Look for event handlers
parent = InterfaceAnalyzer._find_parent_assign(tree, node)
if parent:
events = InterfaceAnalyzer._find_component_events(tree, parent)
components.append(ComponentConfig(
type=ComponentType[component_type.upper()],
label=label or component_type,
properties=properties,
events=events
))
except Exception as e:
logger.error(f"Error extracting components: {e}")
return components
@staticmethod
def _find_parent_assign(tree: ast.AST, node: ast.Call) -> Optional[ast.AST]:
"""Find the assignment node for a component"""
for potential_parent in ast.walk(tree):
if isinstance(potential_parent, ast.Assign):
for child in ast.walk(potential_parent.value):
if child == node:
return potential_parent
return None
@staticmethod
def _find_component_events(tree: ast.AST, assign_node: ast.Assign) -> List[str]:
"""Find events attached to a component"""
events = []
component_name = assign_node.targets[0].id
for node in ast.walk(tree):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Attribute):
if hasattr(node.func.value, 'id') and node.func.value.id == component_name:
events.append(node.func.attr)
return events
@staticmethod
def analyze_interface_structure(code: str) -> Dict[str, Any]:
"""Analyze interface structure"""
try:
# Extract components
components = InterfaceAnalyzer.extract_components(code)
# Analyze functions
functions = []
tree = ast.parse(code)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
functions.append({
"name": node.name,
"args": [arg.arg for arg in node.args.args],
"returns": InterfaceAnalyzer._get_return_type(node)
})
# Analyze dependencies
dependencies = set()
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
dependencies.add(name.name)
elif isinstance(node, ast.ImportFrom):
if node.module:
dependencies.add(node.module)
return {
"components": [
{
"type": comp.type.value,
"label": comp.label,
"properties": comp.properties,
"events": comp.events
}
for comp in components
],
"functions": functions,
"dependencies": list(dependencies)
}
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}
@staticmethod
def _get_return_type(node: ast.FunctionDef) -> str:
"""Get function return type if specified"""
if node.returns:
return ast.unparse(node.returns)
return "Any"
class PreviewManager:
"""Manages interface previews"""
def __init__(self):
self.current_process: Optional[subprocess.Popen] = None
self.preview_port = DEFAULT_PORT
self._lock = threading.Lock()
def start_preview(self, code: str) -> Tuple[bool, str]:
"""Start preview in a separate process"""
with self._lock:
try:
self.stop_preview()
# Create temporary module
module_path = create_temp_module(code)
# Start new process
self.current_process = subprocess.Popen(
['python', module_path],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# Wait for server to start
time.sleep(2)
# Check if process is still running
if self.current_process.poll() is not None:
stdout, stderr = self.current_process.communicate()
error_msg = stderr.decode('utf-8')
raise RuntimeError(f"Preview failed to start: {error_msg}")
return True, f"http://localhost:{self.preview_port}"
except Exception as e:
return False, str(e)
def stop_preview(self):
"""Stop current preview process"""
if self.current_process:
self.current_process.terminate()
try:
self.current_process.wait(timeout=5)
except subprocess.TimeoutExpired:
self.current_process.kill()
self.current_process = None
def cleanup(self):
"""Cleanup resources"""
self.stop_preview()
# Clean up temporary files
for temp_file in TEMP_DIR.glob("*.py"):
try:
temp_file.unlink()
except Exception as e:
logger.error(f"Error deleting temporary file {temp_file}: {e}")
class GradioInterface:
"""Main Gradio interface builder class"""
def __init__(self):
"""Initialize the Gradio interface builder"""
try:
self.rag_system = MultimodalRAG()
self.template_manager = TemplateManager()
self.preview_manager = PreviewManager()
self.current_code = ""
self.error_log = []
self.interface = self._create_interface()
except Exception as e:
logger.error(f"Error initializing GradioInterface: {str(e)}")
raise
def _create_interface(self) -> gr.Blocks:
"""Create the main Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("# 🚀 Gradio Interface Builder")
with gr.Tabs():
# Design Tab
with gr.Tab("Design"):
with gr.Row():
with gr.Column(scale=2):
# Input Section
gr.Markdown("## 📝 Design Your Interface")
description = gr.Textbox(
label="Description",
placeholder="Describe the interface you want to create...",
lines=3
)
screenshot = gr.Image(
label="Screenshot (optional)",
type="pil"
)
with gr.Row():
generate_btn = gr.Button("🎨 Generate Interface", variant="primary")
clear_btn = gr.Button("🗑️ Clear")
# Template Selection
gr.Markdown("### 📚 Templates")
template_dropdown = gr.Dropdown(
choices=self._get_template_choices(),
label="Base Template",
interactive=True
)
with gr.Column(scale=3):
# Code Editor
code_editor = gr.Code(
label="Generated Code",
language="python",
interactive=True
)
with gr.Row():
validate_btn = gr.Button("✅ Validate")
format_btn = gr.Button("📋 Format")
save_template_btn = gr.Button("💾 Save as Template")
validation_output = gr.Markdown()
# Preview Tab
with gr.Tab("Preview"):
with gr.Row():
preview_btn = gr.Button("▶️ Start Preview", variant="primary")
stop_preview_btn = gr.Button("⏹️ Stop Preview")
preview_frame = gr.HTML(
label="Preview",
value="<p>Click 'Start Preview' to see your interface</p>"
)
preview_status = gr.Markdown()
# Analysis Tab
with gr.Tab("Analysis"):
analyze_btn = gr.Button("🔍 Analyze Interface")
with gr.Row():
with gr.Column():
gr.Markdown("### 🧩 Components")
components_json = gr.JSON(label="Detected Components")
with gr.Column():
gr.Markdown("### 🔄 Functions")
functions_json = gr.JSON(label="Interface Functions")
with gr.Row():
with gr.Column():
gr.Markdown("### 📦 Dependencies")
dependencies_json = gr.JSON(label="Required Dependencies")
with gr.Column():
gr.Markdown("### 📄 Requirements")
requirements_text = gr.Textbox(
label="requirements.txt",
lines=10
)
# Event handlers
generate_btn.click(
fn=self._generate_interface,
inputs=[description, screenshot, template_dropdown],
outputs=[code_editor, validation_output]
)
clear_btn.click(
fn=self._clear_interface,
outputs=[description, screenshot, code_editor, validation_output]
)
validate_btn.click(
fn=self._validate_code,
inputs=[code_editor],
outputs=[validation_output]
)
format_btn.click(
fn=self._format_code,
inputs=[code_editor],
outputs=[code_editor]
)
save_template_btn.click(
fn=self._save_as_template,
inputs=[code_editor, description],
outputs=[template_dropdown, validation_output]
)
preview_btn.click(
fn=self._start_preview,
inputs=[code_editor],
outputs=[preview_frame, preview_status]
)
stop_preview_btn.click(
fn=self._stop_preview,
outputs=[preview_frame, preview_status]
)
analyze_btn.click(
fn=self._analyze_interface,
inputs=[code_editor],
outputs=[
components_json,
functions_json,
dependencies_json,
requirements_text
]
)
# Update template dropdown when templates change
template_dropdown.change(
fn=self._load_template,
inputs=[template_dropdown],
outputs=[code_editor]
)
return interface
def _get_template_choices(self) -> List[str]:
"""Get list of available templates"""
templates = self.template_manager.list_templates()
return [""] + [t["name"] for t in templates]
def _generate_interface(
self,
description: str,
screenshot: Optional[Image.Image],
template_name: str
) -> Tuple[str, str]:
"""Generate interface code"""
try:
if template_name:
template = self.template_manager.get_template(template_name)
if template:
code = self.rag_system.generate_code(description, template.code)
else:
raise ValueError(f"Template {template_name} not found")
else:
code = self.rag_system.generate_interface(screenshot, description)
self.current_code = code
return code, "✅ Code generated successfully"
except Exception as e:
error_msg = f"❌ Error generating interface: {str(e)}"
logger.error(error_msg)
return "", error_msg
def _clear_interface(self) -> Tuple[str, None, str, str]:
"""Clear all inputs and outputs"""
self.current_code = ""
return "", None, "", ""
def _validate_code(self, code: str) -> str:
"""Validate code syntax"""
is_valid, message = validate_code(code)
return f"{'✅' if is_valid else '❌'} {message}"
def _format_code(self, code: str) -> str:
"""Format code"""
try:
return CodeFormatter.format_code(code)
except Exception as e:
logger.error(f"Error formatting code: {e}")
return code
def _save_as_template(self, code: str, description: str) -> Tuple[List[str], str]:
"""Save current code as template"""
try:
# Generate template name
base_name = "custom_template"
counter = 1
name = base_name
while self.template_manager.get_template(name):
name = f"{base_name}_{counter}"
counter += 1
# Create template
template = Template(
code=code,
description=description,
components=InterfaceAnalyzer.extract_components(code),
metadata={"category": "custom"}
)
# Save template
if self.template_manager.save_template(name, template):
return self._get_template_choices(), f"✅ Template saved as {name}"
else:
raise Exception("Failed to save template")
except Exception as e:
error_msg = f"❌ Error saving template: {str(e)}"
logger.error(error_msg)
return self._get_template_choices(), error_msg
def _start_preview(self, code: str) -> Tuple[str, str]:
"""Start interface preview"""
success, result = self.preview_manager.start_preview(code)
if success:
return f'<iframe src="{result}" width="100%" height="600px"></iframe>', "✅ Preview started"
else:
return "", f"❌ Preview failed: {result}"
def _stop_preview(self) -> Tuple[str, str]:
"""Stop interface preview"""
self.preview_manager.stop_preview()
return "<p>Preview stopped</p>", "✅ Preview stopped"
def _load_template(self, template_name: str) -> str:
"""Load selected template"""
if not template_name:
return ""
template = self.template_manager.get_template(template_name)
if template:
return template.code
return ""
def _analyze_interface(self, code: str) -> Tuple[Dict, Dict, Dict, str]:
"""Analyze interface structure"""
try:
analysis = InterfaceAnalyzer.analyze_interface_structure(code)
# Generate requirements.txt
dependencies = analysis.get("dependencies", [])
requirements = CodeGenerator.generate_requirements(dependencies)
return (
analysis.get("components", {}),
analysis.get("functions", {}),
{"dependencies": dependencies},
requirements
)
except Exception as e:
logger.error(f"Error analyzing interface: {e}")
return {}, {}, {}, ""
def launch(self, **kwargs):
"""Launch the interface"""
try:
self.interface.launch(**kwargs)
finally:
self.cleanup()
def cleanup(self):
"""Cleanup resources"""
try:
self.preview_manager.cleanup()
self.rag_system.cleanup()
except Exception as e:
logger.error(f"Error during cleanup: {e}")
def main():
"""Main entry point"""
try:
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Create and launch interface
interface = GradioInterface()
interface.launch(
share=True,
debug=True,
server_name="0.0.0.0"
)
except Exception as e:
logger.error(f"Application error: {e}")
raise
if __name__ == "__main__":
main()