File size: 10,361 Bytes
d754f21
a98a37e
 
86363d9
d754f21
b0944ea
 
 
 
 
 
 
 
 
9f232dd
b0944ea
 
 
 
 
 
 
 
9f232dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097ecdb
9f232dd
 
 
 
 
8363049
9f232dd
 
 
 
 
8363049
b0944ea
 
 
 
 
 
 
 
 
9f232dd
 
 
b0944ea
 
9f232dd
b0944ea
 
2a5ea3c
8363049
b0944ea
 
 
 
d754f21
8363049
b0944ea
9f232dd
b0944ea
 
 
9f232dd
b0944ea
9f232dd
 
 
b0944ea
 
9f232dd
 
 
 
 
 
b0944ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f232dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import streamlit as st
import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import openai
import sys

# Set your OpenAI API key here
openai.api_key = "YOUR_OPENAI_API_KEY"

PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"

# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
    st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
    st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
    st.session_state.available_agents = []

class AIAgent:
    def __init__(self, name, description, skills):
        self.name = name
        self.description = description
        self.skills = skills

    def create_agent_prompt(self):
        skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
        agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}

I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
        return agent_prompt

    def autonomous_build(self, chat_history, workspace_projects):
        """
        Autonomous build logic that continues based on the state of chat history and workspace projects.
        """
        # Example logic: Generate a summary of chat history and workspace state
        summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
        summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])

        # Example: Generate the next logical step in the project
        next_step = "Based on the current state, the next logical step is to implement the main application logic."

        return summary, next_step

def save_agent_to_file(agent):
    """Saves the agent's prompt to a file."""
    if not os.path.exists(AGENT_DIRECTORY):
        os.makedirs(AGENT_DIRECTORY)
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
    with open(file_path, "w") as file:
        file.write(agent.create_agent_prompt())
    st.session_state.available_agents.append(agent.name)

def load_agent_prompt(agent_name):
    """Loads an agent prompt from a file."""
    file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
    if os.path.exists(file_path):
        with open(file_path, "r") as file:
            agent_prompt = file.read()
        return agent_prompt
    else:
        return None

def create_agent_from_text(name, text):
    skills = text.split('\n')
    agent = AIAgent(name, "AI agent created from text input.", skills)
    save_agent_to_file(agent)
    return agent.create_agent_prompt()

# Chat interface using a selected agent
def chat_interface_with_agent(input_text, agent_name):
    agent_prompt = load_agent_prompt(agent_name)
    if agent_prompt is None:
        return f"Agent {agent_name} not found."

    # Load the GPT-2 model which is compatible with AutoModelForCausalLM
    model_name = "gpt2"
    try:
        model = AutoModelForCausalLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
    except EnvironmentError as e:
        return f"Error loading model: {e}"

    # Combine the agent prompt with user input
    combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
    
    # Truncate input text to avoid exceeding the model's maximum length
    max_input_length = 900
    input_ids = tokenizer.encode(combined_input, return_tensors="pt")
    if input_ids.shape[1] > max_input_length:
        input_ids = input_ids[:, :max_input_length]

    # Generate chatbot response
    outputs = model.generate(
        input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
    )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Streamlit App
st.title("AI Agent Creator")

# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])

if app_mode == "AI Agent Creator":
    # AI Agent Creator
    st.header("Create an AI Agent from Text")

    st.subheader("From Text")
    agent_name = st.text_input("Enter agent name:")
    text_input = st.text_area("Enter skills (one per line):")
    if st.button("Create Agent"):
        agent_prompt = create_agent_from_text(agent_name, text_input)
        st.success(f"Agent '{agent_name}' created and saved successfully.")
        st.session_state.available_agents.append(agent_name)

elif app_mode == "Tool Box":
    # Tool Box
    st.header("AI-Powered Tools")

    # Chat Interface
    st.subheader("Chat with CodeCraft")
    chat_input = st.text_area("Enter your message:")
    if st.button("Send"):
        chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Terminal Interface
    st.subheader("Terminal")
    terminal_input = st.text_input("Enter a command:")
    if st.button("Run"):
        terminal_output = terminal_interface(terminal_input)
        st.session_state.terminal_history.append((terminal_input, terminal_output))
        st.code(terminal_output, language="bash")

    # Code Editor Interface
    st.subheader("Code Editor")
    code_editor = st.text_area("Write your code:", height=300)
    if st.button("Format & Lint"):
        formatted_code, lint_message = code_editor_interface(code_editor)
        st.code(formatted_code, language="python")
        st.info(lint_message)

    # Text Summarization Tool
    st.subheader("Summarize Text")
    text_to_summarize = st.text_area("Enter text to summarize:")
    if st.button("Summarize"):
        summary = summarize_text(text_to_summarize)
        st.write(f"Summary: {summary}")

    # Sentiment Analysis Tool
    st.subheader("Sentiment Analysis")
    sentiment_text = st.text_area("Enter text for sentiment analysis:")
    if st.button("Analyze Sentiment"):
        sentiment = sentiment_analysis(sentiment_text)
        st.write(f"Sentiment: {sentiment}")

    # Text Translation Tool (Code Translation)
    st.subheader("Translate Code")
    code_to_translate = st.text_area("Enter code to translate:")
    source_language = st.text_input("Enter source language (e.g., 'Python'):")
    target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
    if st.button("Translate Code"):
        translated_code = translate_code(code_to_translate, source_language, target_language)
        st.code(translated_code, language=target_language.lower())

    # Code Generation
    st.subheader("Code Generation")
    code_idea = st.text_input("Enter your code idea:")
    if st.button("Generate Code"):
        generated_code = generate_code(code_idea)
        st.code(generated_code, language="python")

elif app_mode == "Workspace Chat App":
    # Workspace Chat App
    st.header("Workspace Chat App")

    # Project Workspace Creation
    st.subheader("Create a New Project")
    project_name = st.text_input("Enter project name:")
    if st.button("Create Project"):
        workspace_status = workspace_interface(project_name)
        st.success(workspace_status)

    # Add Code to Workspace
    st.subheader("Add Code to Workspace")
    code_to_add = st.text_area("Enter code to add to workspace:")
    file_name = st.text_input("Enter file name (e.g., 'app.py'):")
    if st.button("Add Code"):
        add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
        st.success(add_code_status)

    # Terminal Interface with Project Context
    st.subheader("Terminal (Workspace Context)")
    terminal_input = st.text_input("Enter a command within the workspace:")
    if st.button("Run Command"):
        terminal_output = terminal_interface(terminal_input, project_name)
        st.code(terminal_output, language="bash")

    # Chat Interface for Guidance
    st.subheader("Chat with CodeCraft for Guidance")
    chat_input = st.text_area("Enter your message for guidance:")
    if st.button("Get Guidance"):
        chat_response = chat_interface(chat_input)
        st.session_state.chat_history.append((chat_input, chat_response))
        st.write(f"CodeCraft: {chat_response}")

    # Display Chat History
    st.subheader("Chat History")
    for user_input, response in st.session_state.chat_history:
        st.write(f"User: {user_input}")
        st.write(f"CodeCraft: {response}")

    # Display Terminal History
    st.subheader("Terminal History")
    for command, output in st.session_state.terminal_history:
        st.write(f"Command: {command}")
        st.code(output, language="bash")

    # Display Projects and Files
    st.subheader("Workspace Projects")
    for project, details in st.session_state.workspace_projects.items():
        st.write(f"Project: {project}")
        for file in details['files']:
            st.write(f"  - {file}")

    # Chat with AI Agents
    st.subheader("Chat with AI Agents")
    selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
    agent_chat_input = st.text_area("Enter your message for the agent:")
    if st.button("Send to Agent"):
        agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
        st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
        st.write(f"{selected_agent}: {agent_chat_response}")

    # Automate Build Process
    st.subheader("Automate Build Process")
    if st.button("Automate"):
        agent = AIAgent(selected_agent, "", [])  # Load the agent without skills for now
        summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
        st.write("Autonomous Build Summary:")
        st.write(summary)
        st.write("Next Step:")
        st.write(next_step)