Spaces:
Sleeping
Sleeping
File size: 16,748 Bytes
d754f21 a98a37e 86363d9 d754f21 b0944ea 097ecdb 8363049 d754f21 8363049 d754f21 8363049 b0944ea 2a5ea3c 8363049 b0944ea d754f21 8363049 b0944ea 8363049 b0944ea 8363049 b0944ea 8363049 d754f21 8363049 b0944ea 8363049 b0944ea d754f21 8363049 b0944ea 8363049 d754f21 b0944ea d754f21 8363049 b0944ea 8363049 d754f21 8363049 d754f21 8363049 b0944ea 8363049 b0944ea 8363049 b0944ea a3f74af b0944ea 8363049 b0944ea 8363049 b0944ea 86363d9 b0944ea 86363d9 b0944ea 86363d9 84d915d 86363d9 b0944ea dfa271d b0944ea dfa271d b0944ea dfa271d b0944ea dfa271d b0944ea dfa271d b0944ea dfa271d b0944ea dfa271d b0944ea a3f74af b0944ea 9c5cb7f b0944ea dfa271d b0944ea 9c5cb7f b0944ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import streamlit as st
import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import openai
import sys
# Set your OpenAI API key here
openai.api_key = "YOUR_OPENAI_API_KEY"
PROJECT_ROOT = "projects"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
Returns:
The chatbot's response.
"""
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 900
input_ids = tokenizer.encode(input_text, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
# Generate chatbot response
outputs = model.generate(
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# 2. Terminal
def terminal_interface(command, project_name=None):
"""Executes commands in the terminal.
Args:
command: User's command.
project_name: Name of the project workspace to add installed packages.
Returns:
The terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
# If the command is to install a package, update the workspace
if "install" in command and project_name:
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
with open(requirements_path, "a") as req_file:
package_name = command.split()[-1]
req_file.write(f"{package_name}\n")
except Exception as e:
output = f"Error: {e}"
return output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
pylint_output = StringIO()
sys.stdout = pylint_output
sys.stderr = pylint_output
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
lint_message = pylint_output.getvalue()
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# 4. Workspace
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
Returns:
Project creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
# Create project directory
try:
os.makedirs(project_path)
requirements_path = os.path.join(project_path, "requirements.txt")
with open(requirements_path, "w") as req_file:
req_file.write("") # Initialize an empty requirements.txt file
status = f'Project "{project_name}" created successfully.'
st.session_state.workspace_projects[project_name] = {'files': []}
except FileExistsError:
status = f'Project "{project_name}" already exists.'
return status
def add_code_to_workspace(project_name, code, file_name):
"""Adds selected code files to the workspace.
Args:
project_name: Name of the project.
code: Code to be added.
file_name: Name of the file to be created.
Returns:
File creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as code_file:
code_file.write(code)
status = f'File "{file_name}" added to project "{project_name}" successfully.'
st.session_state.workspace_projects[project_name]['files'].append(file_name)
except Exception as e:
status = f"Error: {e}"
return status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
# Load the summarization model
model_name = "facebook/bart-large-cnn"
try:
summarizer = pipeline("summarization", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 1024
inputs = text
if len(text) > max_input_length:
inputs = text[:max_input_length]
# Generate summary
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
"summary_text"
]
return summary
# Example: Sentiment analysis tool
def sentiment_analysis(text):
"""Performs sentiment analysis on a given text using a Hugging Face model.
Args:
text: Text to be analyzed.
Returns:
Sentiment analysis result.
"""
# Load the sentiment analysis model
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
try:
analyzer = pipeline("sentiment-analysis", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Perform sentiment analysis
result = analyzer(text)[0]
return result
# Example: Text translation tool (code translation)
def translate_code(code, source_language, target_language):
"""Translates code from one programming language to another using OpenAI Codex.
Args:
code: Code to be translated.
source_language: The source programming language.
target_language: The target programming language.
Returns:
Translated code.
"""
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
try:
response = openai.Completion.create(
engine="code-davinci-002",
prompt=prompt,
max_tokens=1024,
temperature=0.3,
top_p=1,
n=1,
stop=None
)
translated_code = response.choices[0].text.strip()
except Exception as e:
translated_code = f"Error: {e}"
return translated_code
# 6. Code Generation
def generate_code(idea):
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
Args:
idea: The idea for the code to be generated.
Returns:
The generated code as a string.
"""
# Load the code generation model
model_name = "EleutherAI/gpt-neo-2.7B"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
parts = generated_code.split("\n# Code:")
if len(parts) > 1:
generated_code = parts[1].strip()
else:
generated_code = generated_code.strip()
return generated_code
# 7. AI Personas Creator
def create_persona_from_text(text):
"""Creates an AI persona from the given text.
Args:
text: Text to be used for creating the persona.
Returns:
Persona prompt.
"""
persona_prompt = f"""
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
Streamlit:
* In-depth knowledge of Streamlit's architecture, components, and customization options.
* Expertise in creating interactive and user-friendly dashboards and applications.
* Proficiency in integrating Streamlit with various data sources and machine learning models.
Gradio:
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
Hugging Face:
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
Deployment:
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
* Proficiency in optimizing deployment configurations for performance and scalability.
Additional Skills:
* Strong programming skills in Python and JavaScript.
* Familiarity with Docker and containerization technologies.
* Excellent communication and problem-solving abilities.
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
Example:
Task:
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
Solution:
import streamlit as st
import gradio as gr
from transformers import pipeline
# Create a Hugging Face pipeline
huggingface_model = pipeline("text-generation")
# Create a Streamlit app
st.title("Hugging Face Text Generation App")
# Define a Gradio component
demo = gr.Interface(
fn=huggingface_model,
inputs=gr.Textbox(lines=2),
outputs=gr.Textbox(lines=1),
)
# Display the Gradio component in the Streamlit app
st.write(demo)
"""
return persona_prompt
# Streamlit App
st.title("AI Personas Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Personas Creator":
# AI Personas Creator
st.header("Create the System Prompt of an AI Persona from YouTube or Text")
st.subheader("From Text")
text_input = st.text_area("Enter text to create an AI persona:")
if st.button("Create Persona"):
persona_prompt = create_persona_from_text(text_input)
st.subheader("Persona Prompt")
st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g., 'Python'):")
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
if st.button("Translate Code"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}") |