Spaces:
Running
Running
File size: 12,162 Bytes
a98a37e 4ebd6c7 714ba23 cb052d2 714ba23 cb052d2 4ebd6c7 714ba23 c6d7c50 cb052d2 714ba23 cb052d2 714ba23 cb052d2 714ba23 cb052d2 714ba23 cb052d2 714ba23 cb052d2 714ba23 cb052d2 9cf63c4 cb052d2 714ba23 cb052d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from langchain_community.llms import HuggingFaceHub
from langchain_community.embeddings import HuggingFaceHubEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from llama_cpp import Llama, LlamaCppPythonProvider, LlamaCppAgent
from llama_cpp.llama_cpp_agent import get_messages_formatter_type, get_context_by_model
from io import StringIO
import tempfile
# --- Global Variables ---
CURRENT_PROJECT = {} # Store project data (code, packages, etc.)
MODEL_OPTIONS = {
"CodeQwen": "Qwen/CodeQwen1.5-7B-Chat-GGUF",
"Codestral": "bartowski/Codestral-22B-v0.1-GGUF",
"AutoCoder": "bartowski/AutoCoder-GGUF",
}
MODEL_FILENAMES = {
"CodeQwen": "codeqwen-1_5-7b-chat-q6_k.gguf",
"Codestral": "Codestral-22B-v0.1-Q6_K.gguf",
"AutoCoder": "AutoCoder-Q6_K.gguf",
}
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# --- Load NLP Pipelines ---
classifier = pipeline("text-classification", model="facebook/bart-large-mnli")
# --- Load the model and tokenizer ---
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", use_auth_token=os.environ.get("huggingface_token"))
# --- Utility Functions ---
def install_and_import(package_name):
"""Installs a package using pip and imports it."""
subprocess.check_call(["pip", "install", package_name])
return importlib.import_module(package_name)
def extract_package_name(input_str):
"""Extracts the package name from a PyPI URL or pip command."""
if input_str.startswith("https://pypi.org/project/"):
return input_str.split("/")[-2]
elif input_str.startswith("pip install "):
return input_str.split(" ")[2]
else:
return input_str
def create_interface_from_input(input_str):
"""Creates a Gradio interface with buttons for functions from a package."""
try:
package_name = extract_package_name(input_str)
module = install_and_import(package_name)
# Handle Flask application context if needed
if 'flask' in sys.modules or 'flask_restful' in sys.modules:
app = Flask(__name__)
with app.app_context():
functions = [getattr(module, name) for name in dir(module) if callable(getattr(module, name))]
else:
functions = [getattr(module, name) for name in dir(module) if callable(getattr(module, name))]
function_list = [(func.__name__, func) for func in functions if not func.__name__.startswith("_")]
return function_list, f"Interface for `{package_name}` created."
except Exception as e:
return [], str(e)
def execute_pip_command(command, add_message):
"""Executes a pip command and streams the output."""
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
while True:
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
add_message("System", f"
\n{output.strip()}\n
time.sleep(0.1) # Simulate delay for more realistic streaming
rc = process.poll()
return rc
def generate_text(input_text):
"""Generates text using the loaded language model."""
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
return tokenizer.decode(output[0], skip_special_tokens=True)
# --- AI Agent Functions ---
def analyze_user_intent(user_input):
"""Classifies the user's intent based on their input."""
classification = classifier(user_input)
return classification[0]['label']
def generate_mini_app_ideas(theme):
"""Generates mini-app ideas based on the user's theme."""
if theme.lower() == "productivity":
return [
"Idea-to-Codebase Generator",
"Automated GitHub Repo Manager",
"AI-Powered IDE"
]
elif theme.lower() == "creativity":
return [
"Brainstorming Assistant",
"Mood Board Generator",
"Writing Assistant"
]
elif theme.lower() == "well-being":
return [
"Meditation Guide",
"Mood Tracker",
"Sleep Tracker"
]
else:
return ["No matching mini-apps found. Try a different theme."]
def generate_app_code(app_name, app_description, model_name, history):
"""Generates code for the selected mini-app using the specified GGUF model."""
prompt = f"Write a Python script for a {app_description} named {app_name} using Gradio and Streamlit:"
agent = get_agent(model_name)
generated_code = agent.chat(prompt, history)
return generated_code
def execute_terminal_command(command):
"""Executes a terminal command and returns the output."""
try:
result = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT, universal_newlines=True)
return result.strip(), None
except subprocess.CalledProcessError as e:
return e.output.strip(), str(e)
def install_package(package_name):
"""Installs a package using pip."""
output, error = execute_terminal_command(f"pip install {package_name}")
if error:
return f"Error installing package: {error}"
else:
return f"Package `{package_name}` installed successfully."
def get_project_data():
"""Returns the current project data."""
return CURRENT_PROJECT
def update_project_data(key, value):
"""Updates the project data."""
CURRENT_PROJECT[key] = value
def handle_chat(input_text, history):
"""Handles user input in the chat interface."""
def add_message(sender, message):
history.append((sender, message))
add_message("User", input_text)
if input_text.startswith("pip install ") or input_text.startswith("https://pypi.org/project/"):
package_name = extract_package_name(input_text)
add_message("System", f"Installing `{package_name}`...")
result = install_package(package_name)
add_message("System", result)
update_project_data("packages", CURRENT_PROJECT.get("packages", []) + [package_name])
return history, dynamic_functions
# --- AI Agent Interaction ---
if USER_INTENT is None:
add_message("System", analyze_user_intent(input_text))
add_message("System", "What kind of mini-app do you have in mind?")
elif not MINI_APPS:
add_message("System", "Here are some ideas:")
for idea in generate_mini_app_ideas(input_text):
add_message("System", f"- {idea}")
add_message("System", "Which one would you like to build?")
elif CURRENT_APP["name"] is None:
selected_app = input_text
app_description = next((app for app in MINI_APPS if selected_app in app), None)
if app_description:
add_message("System", f"Generating code for {app_description}...")
code = generate_app_code(selected_app, app_description, "CodeQwen", history) # Use CodeQwen by default
add_message("System", f"
python\n{code}\n
add_message("System", "Code generated! What else can I do for you?")
update_project_data("code", code)
update_project_data("app_name", selected_app)
update_project_data("app_description", app_description)
else:
add_message("System", "Please choose from the provided mini-app ideas.")
else:
add_message("System", "You already have an app in progress. Do you want to start over?")
return history, dynamic_functions
# --- Prebuilt Tools ---
def generate_code_tool(input_text, history):
"""Prebuilt tool for code generation."""
code = generate_app_code("MyTool", "A tool to do something", "CodeQwen", history) # Use CodeQwen by default
return f"
python\n{code}\n
def analyze_code_tool(input_text, history):
"""Prebuilt tool for code analysis."""
agent = get_agent("Codestral")
analysis = agent.chat(input_text, history)
return analysis
# --- Streamlit Interface ---
st.title("AI4ME: Your Personal AI App Workshop")
st.markdown("## Let's build your dream app together! 🤖")
# --- Hugging Face Token Input ---
huggingface_token = st.text_input("Enter your Hugging Face Token", type="password", key="huggingface_token")
os.environ["huggingface_token"] = huggingface_token
# --- Chat Interface ---
chat_history = []
chat_input = st.text_input("Tell me your idea...", key="chat_input")
if chat_input:
chat_history, dynamic_functions = handle_chat(chat_input, chat_history)
for sender, message in chat_history:
st.markdown(f"**{sender}:** {message}")
# --- Code Execution and Deployment ---
if CURRENT_APP["code"]:
st.markdown("## Your App Code:")
code_area = st.text_area("Your App Code", value=CURRENT_APP["code"], key="code_area")
st.markdown("## Deploy Your App (Coming Soon!)")
# Add deployment functionality here using Streamlit's deployment features.
# For example, you could use Streamlit's `st.button` to trigger deployment.
# --- Code Execution ---
st.markdown("## Run Your App:")
if st.button("Execute Code"):
try:
# Use Hugging Face's text-generation pipeline for code execution
inputs = tokenizer(code_area, return_tensors="pt")
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
output = tokenizer.decode(output[0], skip_special_tokens=True)
st.success(f"Code executed successfully!\n{output}")
except Exception as e:
st.error(f"Error executing code: {e}")
# --- Code Editing ---
st.markdown("## Edit Your Code:")
if st.button("Edit Code"):
try:
# Use Hugging Face's text-generation pipeline for code editing
prompt = f"Improve the following Python code:\n
python\n{code_area}\n
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=500, num_return_sequences=1)
edited_code = tokenizer.decode(output[0], skip_special_tokens=True).split("
python\n")[1].split("\n
st.success(f"Code edited successfully!\n{edited_code}")
update_project_data("code", edited_code)
code_area.value = edited_code
except Exception as e:
st.error(f"Error editing code: {e}")
# --- Prebuilt Tools ---
st.markdown("## Prebuilt Tools:")
with st.expander("Generate Code"):
code_input = st.text_area("Enter your code request:", key="code_input")
if st.button("Generate"):
code_output = generate_code_tool(code_input, chat_history)
st.markdown(code_output)
with st.expander("Analyze Code"):
code_input = st.text_area("Enter your code:", key="analyze_code_input")
if st.button("Analyze"):
analysis_output = analyze_code_tool(code_input, chat_history)
st.markdown(analysis_output)
# --- Additional Features ---
# Add features like:
# - Code editing
# - Integration with external APIs
# - Advanced AI agents for more complex tasks
# - User account management |