Spaces:
Running
Running
import streamlit as st | |
import os | |
import subprocess | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import black | |
from pylint import lint | |
from io import StringIO | |
import openai | |
import sys | |
# Set your OpenAI API key here | |
openai.api_key = "YOUR_OPENAI_API_KEY" | |
PROJECT_ROOT = "projects" | |
# Global state to manage communication between Tool Box and Workspace Chat App | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
if 'terminal_history' not in st.session_state: | |
st.session_state.terminal_history = [] | |
if 'workspace_projects' not in st.session_state: | |
st.session_state.workspace_projects = {} | |
# Define functions for each feature | |
# 1. Chat Interface | |
def chat_interface(input_text): | |
"""Handles user input in the chat interface. | |
Args: | |
input_text: User's input text. | |
Returns: | |
The chatbot's response. | |
""" | |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM | |
model_name = "gpt2" | |
try: | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
except EnvironmentError as e: | |
return f"Error loading model: {e}" | |
# Truncate input text to avoid exceeding the model's maximum length | |
max_input_length = 900 | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
if input_ids.shape[1] > max_input_length: | |
input_ids = input_ids[:, :max_input_length] | |
# Generate chatbot response | |
outputs = model.generate( | |
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# 2. Terminal | |
def terminal_interface(command, project_name=None): | |
"""Executes commands in the terminal. | |
Args: | |
command: User's command. | |
project_name: Name of the project workspace to add installed packages. | |
Returns: | |
The terminal output. | |
""" | |
# Execute command | |
try: | |
process = subprocess.run(command.split(), capture_output=True, text=True) | |
output = process.stdout | |
# If the command is to install a package, update the workspace | |
if "install" in command and project_name: | |
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt") | |
with open(requirements_path, "a") as req_file: | |
package_name = command.split()[-1] | |
req_file.write(f"{package_name}\n") | |
except Exception as e: | |
output = f"Error: {e}" | |
return output | |
# 3. Code Editor | |
def code_editor_interface(code): | |
"""Provides code completion, formatting, and linting in the code editor. | |
Args: | |
code: User's code. | |
Returns: | |
Formatted and linted code. | |
""" | |
# Format code using black | |
try: | |
formatted_code = black.format_str(code, mode=black.FileMode()) | |
except black.InvalidInput: | |
formatted_code = code # Keep original code if formatting fails | |
# Lint code using pylint | |
try: | |
pylint_output = StringIO() | |
sys.stdout = pylint_output | |
sys.stderr = pylint_output | |
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code)) | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
lint_message = pylint_output.getvalue() | |
except Exception as e: | |
lint_message = f"Pylint error: {e}" | |
return formatted_code, lint_message | |
# 4. Workspace | |
def workspace_interface(project_name): | |
"""Manages projects, files, and resources in the workspace. | |
Args: | |
project_name: Name of the new project. | |
Returns: | |
Project creation status. | |
""" | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
# Create project directory | |
try: | |
os.makedirs(project_path) | |
requirements_path = os.path.join(project_path, "requirements.txt") | |
with open(requirements_path, "w") as req_file: | |
req_file.write("") # Initialize an empty requirements.txt file | |
status = f'Project "{project_name}" created successfully.' | |
st.session_state.workspace_projects[project_name] = {'files': []} | |
except FileExistsError: | |
status = f'Project "{project_name}" already exists.' | |
return status | |
def add_code_to_workspace(project_name, code, file_name): | |
"""Adds selected code files to the workspace. | |
Args: | |
project_name: Name of the project. | |
code: Code to be added. | |
file_name: Name of the file to be created. | |
Returns: | |
File creation status. | |
""" | |
project_path = os.path.join(PROJECT_ROOT, project_name) | |
file_path = os.path.join(project_path, file_name) | |
try: | |
with open(file_path, "w") as code_file: | |
code_file.write(code) | |
status = f'File "{file_name}" added to project "{project_name}" successfully.' | |
st.session_state.workspace_projects[project_name]['files'].append(file_name) | |
except Exception as e: | |
status = f"Error: {e}" | |
return status | |
# 5. AI-Infused Tools | |
# Define custom AI-powered tools using Hugging Face models | |
# Example: Text summarization tool | |
def summarize_text(text): | |
"""Summarizes a given text using a Hugging Face model. | |
Args: | |
text: Text to be summarized. | |
Returns: | |
Summarized text. | |
""" | |
# Load the summarization model | |
model_name = "facebook/bart-large-cnn" | |
try: | |
summarizer = pipeline("summarization", model=model_name) | |
except EnvironmentError as e: | |
return f"Error loading model: {e}" | |
# Truncate input text to avoid exceeding the model's maximum length | |
max_input_length = 1024 | |
inputs = text | |
if len(text) > max_input_length: | |
inputs = text[:max_input_length] | |
# Generate summary | |
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][ | |
"summary_text" | |
] | |
return summary | |
# Example: Sentiment analysis tool | |
def sentiment_analysis(text): | |
"""Performs sentiment analysis on a given text using a Hugging Face model. | |
Args: | |
text: Text to be analyzed. | |
Returns: | |
Sentiment analysis result. | |
""" | |
# Load the sentiment analysis model | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
try: | |
analyzer = pipeline("sentiment-analysis", model=model_name) | |
except EnvironmentError as e: | |
return f"Error loading model: {e}" | |
# Perform sentiment analysis | |
result = analyzer(text)[0] | |
return result | |
# Example: Text translation tool (code translation) | |
def translate_code(code, source_language, target_language): | |
"""Translates code from one programming language to another using OpenAI Codex. | |
Args: | |
code: Code to be translated. | |
source_language: The source programming language. | |
target_language: The target programming language. | |
Returns: | |
Translated code. | |
""" | |
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}" | |
try: | |
response = openai.Completion.create( | |
engine="code-davinci-002", | |
prompt=prompt, | |
max_tokens=1024, | |
temperature=0.3, | |
top_p=1, | |
n=1, | |
stop=None | |
) | |
translated_code = response.choices[0].text.strip() | |
except Exception as e: | |
translated_code = f"Error: {e}" | |
return translated_code | |
# 6. Code Generation | |
def generate_code(idea): | |
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model. | |
Args: | |
idea: The idea for the code to be generated. | |
Returns: | |
The generated code as a string. | |
""" | |
# Load the code generation model | |
model_name = "EleutherAI/gpt-neo-2.7B" | |
try: | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
except EnvironmentError as e: | |
return f"Error loading model: {e}" | |
# Generate the code | |
input_text = f""" | |
# Idea: {idea} | |
# Code: | |
""" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
max_length=1024, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
temperature=0.7, # Adjust temperature for creativity | |
top_k=50, # Adjust top_k for diversity | |
) | |
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) | |
# Remove the prompt and formatting | |
parts = generated_code.split("\n# Code:") | |
if len(parts) > 1: | |
generated_code = parts[1].strip() | |
else: | |
generated_code = generated_code.strip() | |
return generated_code | |
# 7. AI Personas Creator | |
def create_persona_from_text(text): | |
"""Creates an AI persona from the given text. | |
Args: | |
text: Text to be used for creating the persona. | |
Returns: | |
Persona prompt. | |
""" | |
persona_prompt = f""" | |
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas: | |
Streamlit: | |
* In-depth knowledge of Streamlit's architecture, components, and customization options. | |
* Expertise in creating interactive and user-friendly dashboards and applications. | |
* Proficiency in integrating Streamlit with various data sources and machine learning models. | |
Gradio: | |
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces. | |
* Expertise in creating custom Gradio components and integrating them with Streamlit applications. | |
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks. | |
Hugging Face: | |
* Comprehensive knowledge of Hugging Face's model hub and Transformers library. | |
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks. | |
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing. | |
Deployment: | |
* In-depth understanding of best practices for deploying Streamlit and Gradio applications. | |
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP. | |
* Proficiency in optimizing deployment configurations for performance and scalability. | |
Additional Skills: | |
* Strong programming skills in Python and JavaScript. | |
* Familiarity with Docker and containerization technologies. | |
* Excellent communication and problem-solving abilities. | |
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter. | |
Example: | |
Task: | |
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction. | |
Solution: | |
import streamlit as st | |
import gradio as gr | |
from transformers import pipeline | |
# Create a Hugging Face pipeline | |
huggingface_model = pipeline("text-generation") | |
# Create a Streamlit app | |
st.title("Hugging Face Text Generation App") | |
# Define a Gradio component | |
demo = gr.Interface( | |
fn=huggingface_model, | |
inputs=gr.Textbox(lines=2), | |
outputs=gr.Textbox(lines=1), | |
) | |
# Display the Gradio component in the Streamlit app | |
st.write(demo) | |
""" | |
return persona_prompt | |
# Streamlit App | |
st.title("AI Personas Creator") | |
# Sidebar navigation | |
st.sidebar.title("Navigation") | |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"]) | |
if app_mode == "AI Personas Creator": | |
# AI Personas Creator | |
st.header("Create the System Prompt of an AI Persona from YouTube or Text") | |
st.subheader("From Text") | |
text_input = st.text_area("Enter text to create an AI persona:") | |
if st.button("Create Persona"): | |
persona_prompt = create_persona_from_text(text_input) | |
st.subheader("Persona Prompt") | |
st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300) | |
elif app_mode == "Tool Box": | |
# Tool Box | |
st.header("AI-Powered Tools") | |
# Chat Interface | |
st.subheader("Chat with CodeCraft") | |
chat_input = st.text_area("Enter your message:") | |
if st.button("Send"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Terminal Interface | |
st.subheader("Terminal") | |
terminal_input = st.text_input("Enter a command:") | |
if st.button("Run"): | |
terminal_output = terminal_interface(terminal_input) | |
st.session_state.terminal_history.append((terminal_input, terminal_output)) | |
st.code(terminal_output, language="bash") | |
# Code Editor Interface | |
st.subheader("Code Editor") | |
code_editor = st.text_area("Write your code:", height=300) | |
if st.button("Format & Lint"): | |
formatted_code, lint_message = code_editor_interface(code_editor) | |
st.code(formatted_code, language="python") | |
st.info(lint_message) | |
# Text Summarization Tool | |
st.subheader("Summarize Text") | |
text_to_summarize = st.text_area("Enter text to summarize:") | |
if st.button("Summarize"): | |
summary = summarize_text(text_to_summarize) | |
st.write(f"Summary: {summary}") | |
# Sentiment Analysis Tool | |
st.subheader("Sentiment Analysis") | |
sentiment_text = st.text_area("Enter text for sentiment analysis:") | |
if st.button("Analyze Sentiment"): | |
sentiment = sentiment_analysis(sentiment_text) | |
st.write(f"Sentiment: {sentiment}") | |
# Text Translation Tool (Code Translation) | |
st.subheader("Translate Code") | |
code_to_translate = st.text_area("Enter code to translate:") | |
source_language = st.text_input("Enter source language (e.g., 'Python'):") | |
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):") | |
if st.button("Translate Code"): | |
translated_code = translate_code(code_to_translate, source_language, target_language) | |
st.code(translated_code, language=target_language.lower()) | |
# Code Generation | |
st.subheader("Code Generation") | |
code_idea = st.text_input("Enter your code idea:") | |
if st.button("Generate Code"): | |
generated_code = generate_code(code_idea) | |
st.code(generated_code, language="python") | |
elif app_mode == "Workspace Chat App": | |
# Workspace Chat App | |
st.header("Workspace Chat App") | |
# Project Workspace Creation | |
st.subheader("Create a New Project") | |
project_name = st.text_input("Enter project name:") | |
if st.button("Create Project"): | |
workspace_status = workspace_interface(project_name) | |
st.success(workspace_status) | |
# Add Code to Workspace | |
st.subheader("Add Code to Workspace") | |
code_to_add = st.text_area("Enter code to add to workspace:") | |
file_name = st.text_input("Enter file name (e.g., 'app.py'):") | |
if st.button("Add Code"): | |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) | |
st.success(add_code_status) | |
# Terminal Interface with Project Context | |
st.subheader("Terminal (Workspace Context)") | |
terminal_input = st.text_input("Enter a command within the workspace:") | |
if st.button("Run Command"): | |
terminal_output = terminal_interface(terminal_input, project_name) | |
st.code(terminal_output, language="bash") | |
# Chat Interface for Guidance | |
st.subheader("Chat with CodeCraft for Guidance") | |
chat_input = st.text_area("Enter your message for guidance:") | |
if st.button("Get Guidance"): | |
chat_response = chat_interface(chat_input) | |
st.session_state.chat_history.append((chat_input, chat_response)) | |
st.write(f"CodeCraft: {chat_response}") | |
# Display Chat History | |
st.subheader("Chat History") | |
for user_input, response in st.session_state.chat_history: | |
st.write(f"User: {user_input}") | |
st.write(f"CodeCraft: {response}") | |
# Display Terminal History | |
st.subheader("Terminal History") | |
for command, output in st.session_state.terminal_history: | |
st.write(f"Command: {command}") | |
st.code(output, language="bash") | |
# Display Projects and Files | |
st.subheader("Workspace Projects") | |
for project, details in st.session_state.workspace_projects.items(): | |
st.write(f"Project: {project}") | |
for file in details['files']: | |
st.write(f" - {file}") |