DevToolKit / app.py
acecalisto3's picture
Update app.py
84d915d verified
raw
history blame
16.7 kB
import streamlit as st
import os
import subprocess
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import black
from pylint import lint
from io import StringIO
import openai
import sys
# Set your OpenAI API key here
openai.api_key = "YOUR_OPENAI_API_KEY"
PROJECT_ROOT = "projects"
# Global state to manage communication between Tool Box and Workspace Chat App
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
# Define functions for each feature
# 1. Chat Interface
def chat_interface(input_text):
"""Handles user input in the chat interface.
Args:
input_text: User's input text.
Returns:
The chatbot's response.
"""
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
model_name = "gpt2"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 900
input_ids = tokenizer.encode(input_text, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
# Generate chatbot response
outputs = model.generate(
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# 2. Terminal
def terminal_interface(command, project_name=None):
"""Executes commands in the terminal.
Args:
command: User's command.
project_name: Name of the project workspace to add installed packages.
Returns:
The terminal output.
"""
# Execute command
try:
process = subprocess.run(command.split(), capture_output=True, text=True)
output = process.stdout
# If the command is to install a package, update the workspace
if "install" in command and project_name:
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
with open(requirements_path, "a") as req_file:
package_name = command.split()[-1]
req_file.write(f"{package_name}\n")
except Exception as e:
output = f"Error: {e}"
return output
# 3. Code Editor
def code_editor_interface(code):
"""Provides code completion, formatting, and linting in the code editor.
Args:
code: User's code.
Returns:
Formatted and linted code.
"""
# Format code using black
try:
formatted_code = black.format_str(code, mode=black.FileMode())
except black.InvalidInput:
formatted_code = code # Keep original code if formatting fails
# Lint code using pylint
try:
pylint_output = StringIO()
sys.stdout = pylint_output
sys.stderr = pylint_output
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
lint_message = pylint_output.getvalue()
except Exception as e:
lint_message = f"Pylint error: {e}"
return formatted_code, lint_message
# 4. Workspace
def workspace_interface(project_name):
"""Manages projects, files, and resources in the workspace.
Args:
project_name: Name of the new project.
Returns:
Project creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
# Create project directory
try:
os.makedirs(project_path)
requirements_path = os.path.join(project_path, "requirements.txt")
with open(requirements_path, "w") as req_file:
req_file.write("") # Initialize an empty requirements.txt file
status = f'Project "{project_name}" created successfully.'
st.session_state.workspace_projects[project_name] = {'files': []}
except FileExistsError:
status = f'Project "{project_name}" already exists.'
return status
def add_code_to_workspace(project_name, code, file_name):
"""Adds selected code files to the workspace.
Args:
project_name: Name of the project.
code: Code to be added.
file_name: Name of the file to be created.
Returns:
File creation status.
"""
project_path = os.path.join(PROJECT_ROOT, project_name)
file_path = os.path.join(project_path, file_name)
try:
with open(file_path, "w") as code_file:
code_file.write(code)
status = f'File "{file_name}" added to project "{project_name}" successfully.'
st.session_state.workspace_projects[project_name]['files'].append(file_name)
except Exception as e:
status = f"Error: {e}"
return status
# 5. AI-Infused Tools
# Define custom AI-powered tools using Hugging Face models
# Example: Text summarization tool
def summarize_text(text):
"""Summarizes a given text using a Hugging Face model.
Args:
text: Text to be summarized.
Returns:
Summarized text.
"""
# Load the summarization model
model_name = "facebook/bart-large-cnn"
try:
summarizer = pipeline("summarization", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Truncate input text to avoid exceeding the model's maximum length
max_input_length = 1024
inputs = text
if len(text) > max_input_length:
inputs = text[:max_input_length]
# Generate summary
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
"summary_text"
]
return summary
# Example: Sentiment analysis tool
def sentiment_analysis(text):
"""Performs sentiment analysis on a given text using a Hugging Face model.
Args:
text: Text to be analyzed.
Returns:
Sentiment analysis result.
"""
# Load the sentiment analysis model
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
try:
analyzer = pipeline("sentiment-analysis", model=model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Perform sentiment analysis
result = analyzer(text)[0]
return result
# Example: Text translation tool (code translation)
def translate_code(code, source_language, target_language):
"""Translates code from one programming language to another using OpenAI Codex.
Args:
code: Code to be translated.
source_language: The source programming language.
target_language: The target programming language.
Returns:
Translated code.
"""
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
try:
response = openai.Completion.create(
engine="code-davinci-002",
prompt=prompt,
max_tokens=1024,
temperature=0.3,
top_p=1,
n=1,
stop=None
)
translated_code = response.choices[0].text.strip()
except Exception as e:
translated_code = f"Error: {e}"
return translated_code
# 6. Code Generation
def generate_code(idea):
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
Args:
idea: The idea for the code to be generated.
Returns:
The generated code as a string.
"""
# Load the code generation model
model_name = "EleutherAI/gpt-neo-2.7B"
try:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except EnvironmentError as e:
return f"Error loading model: {e}"
# Generate the code
input_text = f"""
# Idea: {idea}
# Code:
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_sequences = model.generate(
input_ids=input_ids,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7, # Adjust temperature for creativity
top_k=50, # Adjust top_k for diversity
)
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Remove the prompt and formatting
parts = generated_code.split("\n# Code:")
if len(parts) > 1:
generated_code = parts[1].strip()
else:
generated_code = generated_code.strip()
return generated_code
# 7. AI Personas Creator
def create_persona_from_text(text):
"""Creates an AI persona from the given text.
Args:
text: Text to be used for creating the persona.
Returns:
Persona prompt.
"""
persona_prompt = f"""
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
Streamlit:
* In-depth knowledge of Streamlit's architecture, components, and customization options.
* Expertise in creating interactive and user-friendly dashboards and applications.
* Proficiency in integrating Streamlit with various data sources and machine learning models.
Gradio:
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
Hugging Face:
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
Deployment:
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
* Proficiency in optimizing deployment configurations for performance and scalability.
Additional Skills:
* Strong programming skills in Python and JavaScript.
* Familiarity with Docker and containerization technologies.
* Excellent communication and problem-solving abilities.
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
Example:
Task:
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
Solution:
import streamlit as st
import gradio as gr
from transformers import pipeline
# Create a Hugging Face pipeline
huggingface_model = pipeline("text-generation")
# Create a Streamlit app
st.title("Hugging Face Text Generation App")
# Define a Gradio component
demo = gr.Interface(
fn=huggingface_model,
inputs=gr.Textbox(lines=2),
outputs=gr.Textbox(lines=1),
)
# Display the Gradio component in the Streamlit app
st.write(demo)
"""
return persona_prompt
# Streamlit App
st.title("AI Personas Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Personas Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Personas Creator":
# AI Personas Creator
st.header("Create the System Prompt of an AI Persona from YouTube or Text")
st.subheader("From Text")
text_input = st.text_area("Enter text to create an AI persona:")
if st.button("Create Persona"):
persona_prompt = create_persona_from_text(text_input)
st.subheader("Persona Prompt")
st.text_area("You may now copy the text below and use it as Custom prompt!", value=persona_prompt, height=300)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Terminal Interface
st.subheader("Terminal")
terminal_input = st.text_input("Enter a command:")
if st.button("Run"):
terminal_output = terminal_interface(terminal_input)
st.session_state.terminal_history.append((terminal_input, terminal_output))
st.code(terminal_output, language="bash")
# Code Editor Interface
st.subheader("Code Editor")
code_editor = st.text_area("Write your code:", height=300)
if st.button("Format & Lint"):
formatted_code, lint_message = code_editor_interface(code_editor)
st.code(formatted_code, language="python")
st.info(lint_message)
# Text Summarization Tool
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(f"Summary: {summary}")
# Sentiment Analysis Tool
st.subheader("Sentiment Analysis")
sentiment_text = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(sentiment_text)
st.write(f"Sentiment: {sentiment}")
# Text Translation Tool (Code Translation)
st.subheader("Translate Code")
code_to_translate = st.text_area("Enter code to translate:")
source_language = st.text_input("Enter source language (e.g., 'Python'):")
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
if st.button("Translate Code"):
translated_code = translate_code(code_to_translate, source_language, target_language)
st.code(translated_code, language=target_language.lower())
# Code Generation
st.subheader("Code Generation")
code_idea = st.text_input("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language="python")
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Workspace Creation
st.subheader("Create a New Project")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
workspace_status = workspace_interface(project_name)
st.success(workspace_status)
# Add Code to Workspace
st.subheader("Add Code to Workspace")
code_to_add = st.text_area("Enter code to add to workspace:")
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
if st.button("Add Code"):
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
st.success(add_code_status)
# Terminal Interface with Project Context
st.subheader("Terminal (Workspace Context)")
terminal_input = st.text_input("Enter a command within the workspace:")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_input, project_name)
st.code(terminal_output, language="bash")
# Chat Interface for Guidance
st.subheader("Chat with CodeCraft for Guidance")
chat_input = st.text_area("Enter your message for guidance:")
if st.button("Get Guidance"):
chat_response = chat_interface(chat_input)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"CodeCraft: {chat_response}")
# Display Chat History
st.subheader("Chat History")
for user_input, response in st.session_state.chat_history:
st.write(f"User: {user_input}")
st.write(f"CodeCraft: {response}")
# Display Terminal History
st.subheader("Terminal History")
for command, output in st.session_state.terminal_history:
st.write(f"Command: {command}")
st.code(output, language="bash")
# Display Projects and Files
st.subheader("Workspace Projects")
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")