Spaces:
Sleeping
Sleeping
File size: 17,044 Bytes
675c9d3 bd6c875 3dfa6ba bd6c875 675c9d3 b3ef9b6 675c9d3 b3ef9b6 675c9d3 b3ef9b6 675c9d3 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 647ecd3 bd6c875 b3ef9b6 bd6c875 b3ef9b6 675c9d3 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 bd6c875 b3ef9b6 647ecd3 b3ef9b6 647ecd3 3a881df b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 b3ef9b6 647ecd3 675c9d3 b3ef9b6 675c9d3 b3ef9b6 647ecd3 b3ef9b6 0c59574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient, cached_download
from safe_search import safe_search
from i_search import google, i_search as i_s
# --- Configuration ---
VERBOSE = True # Enable verbose logging
MAX_HISTORY = 5 # Maximum history turns to keep
MAX_TOKENS = 2048 # Maximum tokens for LLM responses
TEMPERATURE = 0.7 # Temperature for LLM responses
TOP_P = 0.8 # Top-p (nucleus sampling) for LLM responses
REPETITION_PENALTY = 1.5 # Repetition penalty for LLM responses
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Name of the LLM model
import os
API_KEY = os.getenv("HUGGINGFACE_API_KEY") # Ensure you set the HUGGINGFACE_API_KEY environment variable
# --- Logging Setup ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
"""Formats the prompt for the LLM, including the message and relevant history."""
prompt = " "
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/ "
prompt += f" {bot_response}"
prompt += f"[INST] {message} [/ "
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict
) -> str:
"""Runs the LLM with the given prompt and parameters."""
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp)) # Log the response
return resp
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates text using the LLM."""
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp)) # Log the response
return resp
def compress_history(purpose: str, task: str, history: List[Tuple[str, str]], directory: str) -> str:
"""Compresses the history into a shorter summary."""
resp = run_llm(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Performs a search based on the action input."""
logging.info(f"CALLING SEARCH: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
logging.info(f"Search Result: {response}")
history.append(("observation: search result is: {}".format(response), ""))
else:
history.append(("observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n", ""))
except Exception as e:
history.append(("observation: {}\n".format(e), ""))
return "MAIN", None, history, task
def call_main(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the main agent interaction loop."""
logging.info(f"CALLING MAIN: {action_input}")
resp = run_llm(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history.append((line, ""))
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history.append((line, ""))
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history.append((line, ""))
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def call_set_task(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Sets a new task for the agent."""
logging.info(f"CALLING SET_TASK: {action_input}")
task = run_llm(
TASK_PROMPT,
stop_tokens=[],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
).strip("\n")
history.append(("observation: task has been updated to: {}".format(task), ""))
return "MAIN", None, history, task
def end_fn(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Ends the agent interaction."""
logging.info(f"CALLING END_FN: {action_input}")
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC: Dict[str, callable] = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_name: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Executes the specified action."""
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name = "COMPLETE"
task = "END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history) > MAX_HISTORY:
logging.info("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name = "MAIN"
if action_name == "" or action_name is None:
action_name = "MAIN"
assert action_name in NAME_TO_FUNC
logging.info(f"RUN: {action_name} - {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n", ""))
logging.error(f"Error in run_action: {e}")
return "MAIN", None, history, task
def run(purpose: str, history: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
"""Main agent interaction loop."""
task = None
directory = "./"
if history:
history = str(history).strip("[]")
if not history:
history = []
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
if task == "END":
return (history)
################################################
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 5) -> str:
"""Formats the prompt for the LLM, including the message and relevant history."""
prompt = " "
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/ "
prompt += f" {bot_response}"
prompt += f"[INST] {message} [/ "
return prompt
def parse_action(line: str) -> Tuple[str, str]:
"""Parses the action line to get the action name and input."""
parts = line.split(":", 1)
if len(parts) == 2:
action_name = parts[0].replace("action", "").strip()
action_input = parts[1].strip()
else:
action_name = parts[0].replace("action", "").strip()
action_input = ""
return action_name, action_input
def main():
"""Main function to run the Gradio interface."""
global client
# Initialize the LLM client with your API key
try:
client = InferenceClient(
MODEL_NAME,
token=API_KEY # Replace with your actual API key
)
except Exception as e:
logging.error(f"Error initializing LLM client: {e}")
print("Error initializing LLM client. Please check your API key.")
return
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
["Generate a simple HTML page with a heading and a paragraph.", "```html\n<!DOCTYPE html>\n<html>\n<head>\n<title>My Simple Page</title>\n</head>\n<body>\n<h1>Welcome to my page!</h1>\n<p>This is a simple paragraph.</p>\n</body>\n</html>\n```"],
["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"],
["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"],
]
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
"""Handles the chat interaction."""
prompt = format_prompt(message, history)
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
# Project Explorer Logic
def explore_project(project_path: str) -> str:
"""Explores the project directory and returns a file tree."""
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])
demo.launch()
if __name__ == "__main__":
main()
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/terminal', methods=['POST'])
def terminal():
command = request.json.get('command')
if not command:
return jsonify({'error': 'No command provided'}), 400
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return jsonify({'output': result.stdout, 'error': result.stderr})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(port=5000)
|