File size: 7,669 Bytes
675c9d3
 
 
bd6c875
 
 
3dfa6ba
bd6c875
675c9d3
3a881df
bd6c875
675c9d3
 
 
bd6c875
 
 
 
 
 
 
675c9d3
 
 
3a881df
 
675c9d3
 
 
bd6c875
 
 
 
 
 
 
 
 
 
 
 
 
3a881df
bd6c875
 
 
 
 
 
 
 
 
 
 
 
3a881df
bd6c875
3a881df
 
675c9d3
 
bd6c875
 
 
 
 
 
 
 
 
 
3a881df
 
 
 
 
 
 
 
 
 
bd6c875
3a881df
 
 
 
bd6c875
3a881df
bd6c875
3a881df
 
 
 
 
 
 
 
 
bd6c875
3a881df
 
bd6c875
3a881df
 
 
 
bd6c875
675c9d3
 
bd6c875
 
675c9d3
 
 
bd6c875
675c9d3
 
 
bd6c875
 
 
 
 
 
675c9d3
 
 
 
bd6c875
675c9d3
 
 
 
 
 
 
 
 
 
 
bd6c875
 
 
675c9d3
 
bd6c875
 
3a881df
bd6c875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675c9d3
 
 
 
3a881df
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient, cached_download

# --- Configuration ---
VERBOSE = True  # Enable verbose logging
MAX_HISTORY = 5  # Maximum history turns to keep
MAX_TOKENS = 2048  # Maximum tokens for LLM responses
TEMPERATURE = 0.7  # Temperature for LLM responses
TOP_P = 0.8  # Top-p (nucleus sampling) for LLM responses
REPETITION_PENALTY = 1.5  # Repetition penalty for LLM responses
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"  # Name of the LLM model
API_KEY = "YOUR_API_KEY"  # Replace with your actual Hugging Face API key

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Agents ---
agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV",
    "DATA_SCIENCE",
    "UI_UX_DESIGN",
]

# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Agent: {agent_name}
"""

LOG_PROMPT = """
PROMPT: {content}
"""

LOG_RESPONSE = """
RESPONSE: {resp}
"""

# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
    prompt = ""
    for user_prompt, bot_response in history[-max_history_turns:]:
        prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
    prompt += f"Human: {message}\nAssistant:"
    return prompt

def generate(
    prompt: str,
    history: List[Tuple[str, str]],
    agent_name: str = agents[0],
    sys_prompt: str = "",
    temperature: float = TEMPERATURE,
    max_new_tokens: int = MAX_TOKENS,
    top_p: float = TOP_P,
    repetition_penalty: float = REPETITION_PENALTY,
) -> str:
    # Load model and tokenizer
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    
    # Create a text generation pipeline
    generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
    
    # Prepare the full prompt
    date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    full_prompt = PREFIX.format(
        date_time_str=date_time_str,
        purpose=sys_prompt,
        agent_name=agent_name
    ) + format_prompt(prompt, history)
    
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content=full_prompt))
    
    # Generate response
    response = generator(
        full_prompt,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True
    )[0]['generated_text']
    
    # Extract the assistant's response
    assistant_response = response.split("Assistant:")[-1].strip()
    
    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=assistant_response))
    
    return assistant_response

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
        gr.Markdown("###  Your AI-Powered Development Companion")

        # Chat Interface
        chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
        
        # Input Components
        message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
        purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
        agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
        sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
        temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
        max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
        top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
        repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")

        # Button to submit the message
        submit_button = gr.Button(value="Send")

        # Project Explorer Tab
        with gr.Tab("Project Explorer"):
            project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
            explore_button = gr.Button(value="Explore")
            project_output = gr.Textbox(label="File Tree", lines=20)

        # Chat App Logic Tab
        with gr.Tab("Chat App"):
            history = gr.State([])
            examples = [
                ["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
                ["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
                ["Generate a simple HTML page with a heading and a paragraph.", "```html\n<!DOCTYPE html>\n<html>\n<head>\n<title>My Simple Page</title>\n</head>\n<body>\n<h1>Welcome to my page!</h1>\n<p>This is a simple paragraph.</p>\n</body>\n</html>\n```"],
                ["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"],
                ["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"],
            ]

        def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
            """Handles the chat interaction."""
            response = generate(message, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
            history.append((message, response))
            return history, history

        submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])

        # Project Explorer Logic
        def explore_project(project_path: str) -> str:
            """Explores the project directory and returns a file tree."""
            try:
                tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
                return tree
            except Exception as e:
                return f"Error exploring project: {e}"

        explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])

    demo.launch()

if __name__ == "__main__":
    main()
```