File size: 11,696 Bytes
675c9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924e1fd
675c9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json

# --- Configuration ---
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"  # Model to use
MAX_HISTORY_TURNS = 5  # Number of history turns to keep
VERBOSE = True  # Enable verbose logging

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",  # Name of the log file
    level=logging.INFO,  # Set the logging level (INFO, DEBUG, etc.)
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Agent Definitions ---
agents = {
    "WEB_DEV": {
        "description": "Specialized in web development tasks.",
        "system_prompt": "You are a helpful AI assistant specializing in web development. You can generate code, answer questions, and provide guidance on web technologies.",
    },
    "AI_SYSTEM_PROMPT": {
        "description": "Focuses on generating system prompts for AI agents.",
        "system_prompt": "You are a helpful AI assistant that generates effective system prompts for AI agents. Your prompts should be clear, concise, and provide specific instructions.",
    },
    "PYTHON_CODE_DEV": {
        "description": "Expert in Python code development.",
        "system_prompt": "You are a helpful AI assistant specializing in Python code development. You can generate Python code, debug code, and answer questions about Python.",
    },
    "DATA_SCIENCE": {
        "description": "Expert in data science tasks.",
        "system_prompt": "You are a helpful AI assistant specializing in data science. You can analyze data, build models, and provide insights.",
    },
    "GAME_DEV": {
        "description": "Expert in game development tasks.",
        "system_prompt": "You are a helpful AI assistant specializing in game development. You can generate game logic, design levels, and provide guidance on game engines.",
    },
    # Add more agents as needed
}

# --- Function to format prompt with history ---
def format_prompt(message, history, agent_name, system_prompt):
    prompt = " "
    for user_prompt, bot_response in history[-MAX_HISTORY_TURNS:]:
        prompt += f"[INST] {user_prompt} [/  "
        prompt += f" {bot_response}"
    prompt += f"[INST] {message} [/  "

    # Add system prompt if provided
    if system_prompt:
        prompt = f"{system_prompt}\n\n{prompt}"

    return prompt

# --- Function to run the LLM with specified parameters ---
def run_llm(
    prompt,
    stop_sequences,
    max_tokens,
    temperature=0.7,
    top_p=0.8,
    repetition_penalty=1.5,
):
    seed = random.randint(1, 1111111111111111)
    logging.info(f"Seed: {seed}")  # Log the seed

    client = InferenceClient(MODEL_NAME)
    resp = client.text_generation(
        prompt,
        max_new_tokens=max_tokens,
        stop_sequences=stop_sequences,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )
    if VERBOSE:
        logging.info(f"Prompt: {prompt}")
        logging.info(f"Response: {resp}")
    return resp

# --- Function to handle agent interactions ---
def agent_interaction(
    purpose,
    message,
    agent_name,
    system_prompt,
    history,
    temperature,
    max_new_tokens,
    top_p,
    repetition_penalty,
):
    # Format the prompt with history
    prompt = format_prompt(message, history, agent_name, system_prompt)

    # Run the LLM
    response = run_llm(
        prompt,
        stop_sequences=["observation:", "task:", "action:", "thought:"],
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )

    # Update history
    history.append((message, response))
    return history, history

# --- Function to parse actions from LLM response ---
def parse_action(line):
    """Parse the action line to get the action name and input."""
    parts = line.split(":", 1)
    if len(parts) == 2:
        action_name = parts[0].replace("action", "").strip()
        action_input = parts[1].strip()
    else:
        action_name = parts[0].replace("action", "").strip()
        action_input = ""
    return action_name, action_input

# --- Function to execute actions based on agent's response ---
def execute_action(purpose, task, history, action_name, action_input):
    logging.info(f"Executing Action: {action_name} - {action_input}")

    if action_name == "SEARCH":
        try:
            if "http" in action_input:
                if "<" in action_input:
                    action_input = action_input.strip("<")
                if ">" in action_input:
                    action_input = action_input.strip(">")
                response = i_s(action_input)
                logging.info(f"Search Result: {response}")
                history += "observation: search result is: {}\n".format(response)
            else:
                history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
        except Exception as e:
            history += "observation: {}\n".format(e)
        return "MAIN", None, history, task

    elif action_name == "COMPLETE":
        task = "END"
        return "COMPLETE", "COMPLETE", history, task

    elif action_name == "GENERATE_CODE":
        # Simulate OpenAI API response for code generation (using Hugging Face model)
        # ... (Implement code generation logic using a suitable Hugging Face model)
        # Example:
        # code = generate_code_from_huggingface_model(action_input)  # Replace with actual code generation function
        # history += f"observation: Here's the code: {code}\n"
        # return "MAIN", None, history, task
        pass  # Placeholder for code generation logic

    elif action_name == "RUN_CODE":
        # Simulate OpenAI API response for code execution (using Hugging Face model)
        # ... (Implement code execution logic using a suitable Hugging Face model)
        # Example:
        # output = execute_code_from_huggingface_model(action_input)  # Replace with actual code execution function
        # history += f"observation: Code output: {output}\n"
        # return "MAIN", None, history, task
        pass  # Placeholder for code execution logic

    else:
        # Default action: "MAIN"
        return "MAIN", action_input, history, task

# --- Function to handle the main loop of agent interaction ---
def run_agent(purpose, history):
    task = None
    directory = "./"
    if history:
        history = str(history).strip("[]")
    if not history:
        history = ""

    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None

    while True:
        logging.info(f"---")
        logging.info(f"Purpose: {purpose}")
        logging.info(f"Task: {task}")
        logging.info(f"---")
        logging.info(f"History: {history}")
        logging.info(f"---")

        # Get the agent's next action
        prompt = f"""
        You are a helpful AI assistant. You are working on the task: {task}
        Your current history is:
        {history}
        What is your next thought?
        thought: 
        What is your next action?
        action: 
        """

        response = run_llm(
            prompt,
            stop_sequences=["observation:", "task:", "action:", "thought:"],
            max_tokens=32000,
        )

        # Parse the action
        lines = response.strip().strip("\n").split("\n")
        for line in lines:
            if line.startswith("thought: "):
                history += "{}\n".format(line)
                logging.info(f"Thought: {line}")
            elif line.startswith("action: "):
                action_name, action_input = parse_action(line)
                logging.info(f"Action: {action_name} - {action_input}")
                history += "{}\n".format(line)
                break

        # Execute the action
        action_name, action_input, history, task = execute_action(
            purpose, task, history, action_name, action_input
        )

        yield (history)
        if task == "END":
            return (history)

# --- Gradio Interface ---
def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt - No-Code Development Powerhouse")
        gr.Markdown("### Your AI-Powered Development Companion")

        # Chat Interface
        chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")

        # Input Components
        message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
        purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
        agent_name = gr.Dropdown(label="Agents", choices=list(agents.keys()), value=list(agents.keys())[0], interactive=True)
        system_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
        temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
        max_new_tokens = gr.Slider(label="Max new tokens", value=1048 * 10, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
        top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
        repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")

        # Button to submit the message
        submit_button = gr.Button(value="Send")

        # Project Explorer Tab (Placeholder)
        with gr.Tab("Project Explorer"):
            project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
            explore_button = gr.Button(value="Explore")
            project_output = gr.Textbox(label="File Tree", lines=20)

        # Chat App Logic Tab
        with gr.Tab("Chat App"):
            history = gr.State([])
            examples = [
                ["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
                ["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
            ]

        def chat(purpose, message, agent_name, system_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
            # Get the system prompt for the selected agent
            system_prompt = agents.get(agent_name, {}).get("system_prompt", "")

            # Run the agent interaction
            history, history_output = agent_interaction(
                purpose,
                message,
                agent_name,
                system_prompt,
                history,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty,
            )
            return history, history_output

        submit_button.click(
            chat,
            inputs=[
                purpose,
                message,
                agent_name,
                system_prompt,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty,
                history,
            ],
            outputs=[chatbot, history],
        )

    demo.launch()

if __name__ == "__main__":
    main()