Spaces:
Sleeping
Sleeping
File size: 11,696 Bytes
675c9d3 924e1fd 675c9d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
# --- Configuration ---
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Model to use
MAX_HISTORY_TURNS = 5 # Number of history turns to keep
VERBOSE = True # Enable verbose logging
# --- Logging Setup ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agent Definitions ---
agents = {
"WEB_DEV": {
"description": "Specialized in web development tasks.",
"system_prompt": "You are a helpful AI assistant specializing in web development. You can generate code, answer questions, and provide guidance on web technologies.",
},
"AI_SYSTEM_PROMPT": {
"description": "Focuses on generating system prompts for AI agents.",
"system_prompt": "You are a helpful AI assistant that generates effective system prompts for AI agents. Your prompts should be clear, concise, and provide specific instructions.",
},
"PYTHON_CODE_DEV": {
"description": "Expert in Python code development.",
"system_prompt": "You are a helpful AI assistant specializing in Python code development. You can generate Python code, debug code, and answer questions about Python.",
},
"DATA_SCIENCE": {
"description": "Expert in data science tasks.",
"system_prompt": "You are a helpful AI assistant specializing in data science. You can analyze data, build models, and provide insights.",
},
"GAME_DEV": {
"description": "Expert in game development tasks.",
"system_prompt": "You are a helpful AI assistant specializing in game development. You can generate game logic, design levels, and provide guidance on game engines.",
},
# Add more agents as needed
}
# --- Function to format prompt with history ---
def format_prompt(message, history, agent_name, system_prompt):
prompt = " "
for user_prompt, bot_response in history[-MAX_HISTORY_TURNS:]:
prompt += f"[INST] {user_prompt} [/ "
prompt += f" {bot_response}"
prompt += f"[INST] {message} [/ "
# Add system prompt if provided
if system_prompt:
prompt = f"{system_prompt}\n\n{prompt}"
return prompt
# --- Function to run the LLM with specified parameters ---
def run_llm(
prompt,
stop_sequences,
max_tokens,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.5,
):
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
client = InferenceClient(MODEL_NAME)
resp = client.text_generation(
prompt,
max_new_tokens=max_tokens,
stop_sequences=stop_sequences,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if VERBOSE:
logging.info(f"Prompt: {prompt}")
logging.info(f"Response: {resp}")
return resp
# --- Function to handle agent interactions ---
def agent_interaction(
purpose,
message,
agent_name,
system_prompt,
history,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
):
# Format the prompt with history
prompt = format_prompt(message, history, agent_name, system_prompt)
# Run the LLM
response = run_llm(
prompt,
stop_sequences=["observation:", "task:", "action:", "thought:"],
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
# Update history
history.append((message, response))
return history, history
# --- Function to parse actions from LLM response ---
def parse_action(line):
"""Parse the action line to get the action name and input."""
parts = line.split(":", 1)
if len(parts) == 2:
action_name = parts[0].replace("action", "").strip()
action_input = parts[1].strip()
else:
action_name = parts[0].replace("action", "").strip()
action_input = ""
return action_name, action_input
# --- Function to execute actions based on agent's response ---
def execute_action(purpose, task, history, action_name, action_input):
logging.info(f"Executing Action: {action_name} - {action_input}")
if action_name == "SEARCH":
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
logging.info(f"Search Result: {response}")
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}\n".format(e)
return "MAIN", None, history, task
elif action_name == "COMPLETE":
task = "END"
return "COMPLETE", "COMPLETE", history, task
elif action_name == "GENERATE_CODE":
# Simulate OpenAI API response for code generation (using Hugging Face model)
# ... (Implement code generation logic using a suitable Hugging Face model)
# Example:
# code = generate_code_from_huggingface_model(action_input) # Replace with actual code generation function
# history += f"observation: Here's the code: {code}\n"
# return "MAIN", None, history, task
pass # Placeholder for code generation logic
elif action_name == "RUN_CODE":
# Simulate OpenAI API response for code execution (using Hugging Face model)
# ... (Implement code execution logic using a suitable Hugging Face model)
# Example:
# output = execute_code_from_huggingface_model(action_input) # Replace with actual code execution function
# history += f"observation: Code output: {output}\n"
# return "MAIN", None, history, task
pass # Placeholder for code execution logic
else:
# Default action: "MAIN"
return "MAIN", action_input, history, task
# --- Function to handle the main loop of agent interaction ---
def run_agent(purpose, history):
task = None
directory = "./"
if history:
history = str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
# Get the agent's next action
prompt = f"""
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
response = run_llm(
prompt,
stop_sequences=["observation:", "task:", "action:", "thought:"],
max_tokens=32000,
)
# Parse the action
lines = response.strip().strip("\n").split("\n")
for line in lines:
if line.startswith("thought: "):
history += "{}\n".format(line)
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history += "{}\n".format(line)
break
# Execute the action
action_name, action_input, history, task = execute_action(
purpose, task, history, action_name, action_input
)
yield (history)
if task == "END":
return (history)
# --- Gradio Interface ---
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt - No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=list(agents.keys()), value=list(agents.keys())[0], interactive=True)
system_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=1048 * 10, minimum=0, maximum=1048 * 10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab (Placeholder)
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
]
def chat(purpose, message, agent_name, system_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
# Get the system prompt for the selected agent
system_prompt = agents.get(agent_name, {}).get("system_prompt", "")
# Run the agent interaction
history, history_output = agent_interaction(
purpose,
message,
agent_name,
system_prompt,
history,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
)
return history, history_output
submit_button.click(
chat,
inputs=[
purpose,
message,
agent_name,
system_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
history,
],
outputs=[chatbot, history],
)
demo.launch()
if __name__ == "__main__":
main()
|