Spaces:
Sleeping
Sleeping
File size: 14,377 Bytes
fd59a9f 20ca81b 8173591 e487958 8173591 8c76f34 6e48490 8173591 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import subprocess
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import openai
# Constants
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
PROJECT_ROOT = "projects"
AGENT_DIRECTORY = "agents"
# Initialize session state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'terminal_history' not in st.session_state:
st.session_state.terminal_history = []
if 'workspace_projects' not in st.session_state:
st.session_state.workspace_projects = {}
if 'available_agents' not in st.session_state:
st.session_state.available_agents = []
if 'current_state' not in st.session_state:
st.session_state.current_state = {
'toolbox': {},
'workspace_chat': {}
}
# AI Agent class
class AIAgent:
def __init__(self, name, description, skills):
self.name = name
self.description = description
self.skills = skills
def create_agent_prompt(self):
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
agent_prompt = f"""
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
{skills_str}
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
"""
return agent_prompt
def autonomous_build(self, chat_history, workspace_projects):
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
next_step = "Based on the current state, the next logical step is to implement the main application logic."
return summary, next_step
# Functions for agent management
def save_agent_to_file(agent):
if not os.path.exists(AGENT_DIRECTORY):
os.makedirs(AGENT_DIRECTORY)
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
with open(file_path, "w") as file:
file.write(agent.create_agent_prompt())
with open(config_path, "w") as file:
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
st.session_state.available_agents.append(agent.name)
commit_and_push_changes(f"Add agent {agent.name}")
def load_agent_prompt(agent_name):
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
if os.path.exists(file_path):
with open(file_path, "r") as file:
agent_prompt = file.read()
return agent_prompt
else:
return None
def create_agent_from_text(name, text):
skills = text.split('\n')
agent = AIAgent(name, "AI agent created from text input.", skills)
save_agent_to_file(agent)
return agent.create_agent_prompt()
# OpenAI GPT-3 API setup for text generation
openai.api_key = st.secrets["OPENAI_API_KEY"]
# Initialize the Hugging Face model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# Tool Box UI elements
def toolbox():
st.header("Tool Box")
# List available agents
for agent in st.session_state.available_agents:
st.markdown(f"### {agent}")
st.write(agent.description)
if st.button(f'Chat with {agent}'):
chat_with_agent(agent)
# Add new agents
if st.session_state['toolbox'].get('new_agent') is None:
st.session_state['toolbox']['new_agent'] = {}
st.text_input("Agent Name", key='name', on_change=update_agent)
st.text_area("Agent Description", key='description', on_change=update_agent)
st.text_input("Skills (comma-separated)", key='skills', on_change=update_agent)
if st.button('Create New Agent'):
skills = [s.strip() for s in st.session_state['toolbox']['new_agent'].get('skills', '').split(',')]
new_agent = AIAgent(st.session_state['toolbox']['new_agent'].get('name'),
st.session_state['toolbox']['new_agent'].get('description'), skills)
st.session_state.available_agents.append(new_agent)
def update_agent():
st.session_state['toolbox']['new_agent'] = {
'name': st.session_state.name,
'description': st.session_state.description,
'skills': st.session_state.skills
}
def chat_with_agent(agent_name):
st.subheader(f"Chat with {agent_name}")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
chat_response = chat_interface_with_agent(chat_input, agent_name)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"{agent_name}: {chat_response}")
# Workspace UI elements
def workspace():
st.header("Workspace")
# Project selection and interaction
for project, details in st.session_state.workspace_projects.items():
st.write(f"Project: {project}")
for file in details['files']:
st.write(f" - {file}")
if st.button('Add New Project'):
new_project = {'name': '', 'description': '', 'files': []}
st.session_state.workspace_projects[new_project['name']] = new_project
# Main function to display the app
def main():
toolbox()
workspace()
if __name__ == "__main__":
main()
# Additional functionalities
def commit_and_push_changes(commit_message):
commands = [
"git add .",
f"git commit -m '{commit_message}'",
"git push"
]
for command in commands:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
st.error(f"Error executing command '{command}': {result.stderr}")
break
def chat_interface_with_agent(input_text, agent_name):
agent_prompt = load_agent_prompt(agent_name)
if agent_prompt is None:
return f"Agent {agent_name} not found."
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
max_input_length = 900
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
if input_ids.shape[1] > max_input_length:
input_ids = input_ids[:, :max_input_length]
outputs = model.generate(input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def workspace_interface(project_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(PROJECT_ROOT):
os.makedirs(PROJECT_ROOT)
if not os.path.exists(project_path):
os.makedirs(project_path)
st.session_state.workspace_projects[project_name] = {"files": []}
st.session_state.current_state['workspace_chat']['project_name'] = project_name
commit_and_push_changes(f"Create project {project_name}")
return f"Project {project_name} created successfully."
else:
return f"Project {project_name} already exists."
def add_code_to_workspace(project_name, code, file_name):
project_path = os.path.join(PROJECT_ROOT, project_name)
if os.path.exists(project_path):
file_path = os.path.join(project_path, file_name)
with open(file_path, "w") as file:
file.write(code)
st.session_state.workspace_projects[project_name]["files"].append(file_name)
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
return f"Code added to {file_name} in project {project_name} successfully."
else:
return f"Project {project_name} does not exist."
def terminal_interface(command, project_name=None):
if project_name:
project_path = os.path.join(PROJECT_ROOT, project_name)
if not os.path.exists(project_path):
return f"Project {project_name} does not exist."
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
else:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode == 0:
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
return result.stdout
else:
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
return result.stderr
def summarize_text(text):
summarizer = pipeline("summarization")
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
return summary[0]['summary_text']
def sentiment_analysis(text):
analyzer = pipeline("sentiment-analysis")
sentiment = analyzer(text)
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
return sentiment[0]
def generate_code(code_idea):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
]
)
generated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['generated_code'] = generated_code
return generated_code
def translate_code(code, input_language, output_language):
language_extensions = {
"Python": ".py",
"JavaScript": ".js",
# Add more languages and their extensions here
}
if input_language not in language_extensions:
raise ValueError(f"Invalid input language: {input_language}")
if output_language not in language_extensions:
raise ValueError(f"Invalid output language: {output_language}")
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an expert software developer."},
{"role": "user", "content": prompt}
]
)
translated_code = response.choices[0].message['content'].strip()
st.session_state.current_state['toolbox']['translated_code'] = translated_code
return translated_code
# Streamlit App
st.title("AI Agent Creator")
# Sidebar navigation
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
if app_mode == "AI Agent Creator":
# AI Agent Creator
st.header("Create an AI Agent from Text")
st.subheader("From Text")
agent_name = st.text_input("Enter agent name:")
text_input = st.text_area("Enter skills (one per line):")
if st.button("Create Agent"):
agent_prompt = create_agent_from_text(agent_name, text_input)
st.success(f"Agent '{agent_name}' created and saved successfully.")
st.session_state.available_agents.append(agent_name)
elif app_mode == "Tool Box":
# Tool Box
st.header("AI-Powered Tools")
# Chat Interface
st.subheader("Chat with CodeCraft")
chat_input = st.text_area("Enter your message:")
if st.button("Send"):
if chat_input.startswith("@"):
agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
chat_response = chat_interface_with_agent(chat_input, agent_name)
st.session_state.chat_history.append((chat_input, chat_response))
st.write(f"{agent_name}: {chat_response}")
# Code Generation
st.subheader("Generate Code")
code_idea = st.text_area("Enter your code idea:")
if st.button("Generate Code"):
generated_code = generate_code(code_idea)
st.code(generated_code, language='python')
# Code Translation
st.subheader("Translate Code")
code = st.text_area("Enter your code:")
input_language = st.selectbox("Input Language", ["Python", "JavaScript"])
output_language = st.selectbox("Output Language", ["Python", "JavaScript"])
if st.button("Translate Code"):
translated_code = translate_code(code, input_language, output_language)
st.code(translated_code, language=output_language.lower())
# Summarization
st.subheader("Summarize Text")
text_to_summarize = st.text_area("Enter text to summarize:")
if st.button("Summarize"):
summary = summarize_text(text_to_summarize)
st.write(summary)
# Sentiment Analysis
st.subheader("Sentiment Analysis")
text_to_analyze = st.text_area("Enter text for sentiment analysis:")
if st.button("Analyze Sentiment"):
sentiment = sentiment_analysis(text_to_analyze)
st.write(sentiment)
elif app_mode == "Workspace Chat App":
# Workspace Chat App
st.header("Workspace Chat App")
# Project Management
st.subheader("Manage Projects")
project_name = st.text_input("Enter project name:")
if st.button("Create Project"):
project_message = workspace_interface(project_name)
st.success(project_message)
# Add Code to Project
st.subheader("Add Code to Project")
project_name_for_code = st.text_input("Enter project name for code:")
code_content = st.text_area("Enter code content:")
file_name = st.text_input("Enter file name:")
if st.button("Add Code"):
add_code_message = add_code_to_workspace(project_name_for_code, code_content, file_name)
st.success(add_code_message)
# Terminal Interface
st.subheader("Terminal Interface")
terminal_command = st.text_area("Enter terminal command:")
project_name_for_terminal = st.text_input("Enter project name for terminal (optional):")
if st.button("Run Command"):
terminal_output = terminal_interface(terminal_command, project_name_for_terminal)
st.text(terminal_output) |