Spaces:
Sleeping
Sleeping
File size: 19,763 Bytes
e84be5f ded0f49 8ffb558 f3c3b2e 8ffb558 f3c3b2e 8ffb558 9ca8bda 8ffb558 22c68ad 8ffb558 e8fb655 8ffb558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import subprocess
import random
from typing import List, Dict, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
# --- Configuration ---
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Hugging Face model for text generation
MAX_HISTORY_TURNS = 5 # Number of previous turns to include in the prompt
MAX_TOKENS_PER_TURN = 2048 # Maximum number of tokens to generate per turn
VERBOSE_LOGGING = True # Enable verbose logging for debugging
DEFAULT_AGENT = "WEB_DEV" # Default agent to use
# --- Logging Setup ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agent Definitions ---
class Agent:
"""Base class for all agents."""
def __init__(self, name: str, description: str):
self.name = name
self.description = description
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles an action from the user.
Args:
action: The action name.
action_input: The input for the action.
history: The conversation history.
task: The current task.
Returns:
A tuple containing the next action name, action input, updated history, and updated task.
"""
raise NotImplementedError("Agent subclasses must implement handle_action.")
def get_prompt(self, message: str, history: List[Tuple[str, str]], task: str) -> str:
"""Generates a prompt for the language model.
Args:
message: The user's message.
history: The conversation history.
task: The current task.
Returns:
The prompt string.
"""
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
prompt = f"""
{date_time_str}
Agent: {self.name}
Task: {task}
History:
{self.format_history(history)}
Message: {message}
"""
return prompt
def format_history(self, history: List[Tuple[str, str]]) -> str:
"""Formats the conversation history for the prompt."""
formatted_history = ""
for user_message, agent_response in history[-MAX_HISTORY_TURNS:]:
formatted_history += f"[INST] {user_message} [/INST]\n{agent_response}\n"
return formatted_history
class WebDevAgent(Agent):
"""Agent for web development tasks."""
def __init__(self):
super().__init__(name="WEB_DEV", description="Agent specialized in web development tasks.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "SEARCH":
return self._handle_search_action(action_input, history, task)
elif action == "GENERATE_HTML":
return self._handle_generate_html_action(action_input, history, task)
elif action == "GENERATE_CSS":
return self._handle_generate_css_action(action_input, history, task)
elif action == "GENERATE_JS":
return self._handle_generate_js_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_search_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the SEARCH action."""
if VERBOSE_LOGGING:
logging.info(f"Calling SEARCH action with input: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input) # Use i_search for web search
history.append(("observation: search result is:", response))
else:
history.append(("observation: I need a valid URL for the SEARCH action.", ""))
except Exception as e:
history.append(("observation:", str(e)))
return "MAIN", None, history, task
def _handle_generate_html_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_HTML action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_HTML action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate HTML code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```html"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated HTML code:", response))
return "MAIN", None, history, task
def _handle_generate_css_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_CSS action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_CSS action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate CSS code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```css"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated CSS code:", response))
return "MAIN", None, history, task
def _handle_generate_js_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_JS action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_JS action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate JavaScript code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```js"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated JavaScript code:", response))
return "MAIN", None, history, task
class AiSystemPromptAgent(Agent):
"""Agent for generating system prompts."""
def __init__(self):
super().__init__(name="AI_SYSTEM_PROMPT", description="Agent specialized in generating system prompts.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "GENERATE_PROMPT":
return self._handle_generate_prompt_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_generate_prompt_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_PROMPT action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_PROMPT action with input: {action_input}")
# Simulate OpenAI's prompt generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate a system prompt for a language model that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```json"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated system prompt:", response))
return "MAIN", None, history, task
class PythonCodeDevAgent(Agent):
"""Agent for Python code development tasks."""
def __init__(self):
super().__init__(name="PYTHON_CODE_DEV", description="Agent specialized in Python code development tasks.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "GENERATE_CODE":
return self._handle_generate_code_action(action_input, history, task)
elif action == "RUN_CODE":
return self._handle_run_code_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_generate_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_CODE action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_CODE action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate Python code that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated Python code:", response))
return "MAIN", None, history, task
def _handle_run_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the RUN_CODE action."""
if VERBOSE_LOGGING:
logging.info(f"Calling RUN_CODE action with input: {action_input}")
# Simulate OpenAI's code execution capabilities using Hugging Face
prompt = self.get_prompt(f"Run the following Python code and provide the output: {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: code output:", response))
return "MAIN", None, history, task
# --- Action Handlers ---
def handle_main_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the MAIN action, which is the default action."""
if VERBOSE_LOGGING:
logging.info(f"Calling MAIN action with input: {action_input}")
prompt = agent.get_prompt(action_input, history, task)
response = run_gpt(prompt, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=MAX_TOKENS_PER_TURN)
if VERBOSE_LOGGING:
logging.info(f"Response from model: {response}")
history.append((action_input, response))
lines = response.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Action: {action_name} - {action_input}")
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def handle_update_task_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the UPDATE-TASK action, which updates the current task."""
if VERBOSE_LOGGING:
logging.info(f"Calling UPDATE-TASK action with input: {action_input}")
prompt = agent.get_prompt(action_input, history, task)
task = run_gpt(prompt, stop_tokens=[], max_tokens=64).strip("\n")
history.append(("observation: task has been updated to:", task))
return "MAIN", None, history, task
def handle_search_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the SEARCH action, which performs a web search."""
if VERBOSE_LOGGING:
logging.info(f"Calling SEARCH action with input: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input) # Use i_search for web search
history.append(("observation: search result is:", response))
else:
history.append(("observation: I need a valid URL for the SEARCH action.", ""))
except Exception as e:
history.append(("observation:", str(e)))
return "MAIN", None, history, task
def handle_complete_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the COMPLETE action, which ends the current task."""
if VERBOSE_LOGGING:
logging.info(f"Calling COMPLETE action.")
task = "END"
return "COMPLETE", "COMPLETE", history, task
# --- Action Mapping ---
ACTION_HANDLERS: Dict[str, callable] = {
"MAIN": handle_main_action,
"UPDATE-TASK": handle_update_task_action,
"SEARCH": handle_search_action,
"COMPLETE": handle_complete_action,
}
# --- Utility Functions ---
def run_gpt(prompt: str, stop_tokens: List[str], max_tokens: int) -> str:
"""Runs the language model and returns the generated text."""
if VERBOSE_LOGGING:
logging.info(f"Prompt: {prompt}")
client = InferenceClient(MODEL_NAME)
resp = client.text_generation(prompt, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
if VERBOSE_LOGGING:
logging.info(f"Response: {resp}")
return resp
def parse_action(line: str) -> Tuple[str, str]:
"""Parses an action line to get the action name and input."""
parts = line.split(":", 1)
if len(parts) == 2:
action_name = parts[0].replace("action", "").strip()
action_input = parts[1].strip()
else:
action_name = parts[0].replace("action", "").strip()
action_input = ""
return action_name, action_input
def run_agent(purpose: str, history: List[Tuple[str, str]], agent: Agent) -> List[Tuple[str, str]]:
"""Runs the agent and returns the updated conversation history."""
task = None
directory = "./"
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
if VERBOSE_LOGGING:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
if VERBOSE_LOGGING:
logging.info(f"Running action: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name = "COMPLETE"
task = "END"
return history
if action_name not in ACTION_HANDLERS:
action_name = "MAIN"
if action_name == "" or action_name is None:
action_name = "MAIN"
action_handler = ACTION_HANDLERS[action_name]
action_name, action_input, history, task = action_handler(action_name, action_input, history, task, agent)
yield history
if task == "END":
return history
except Exception as e:
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command", ""))
logging.error(f"Error in run_agent: {e}")
return history
# --- Gradio Interface ---
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: Your No-Code Development Powerhouse")
gr.Markdown("### Agents w/ Agents: Mastering No-Code Development")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[agent.name for agent in [WebDevAgent(), AiSystemPromptAgent(), PythonCodeDevAgent()]], value=DEFAULT_AGENT, interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
["Generate a web page with a heading that says 'Welcome to My Website!'", "action: GENERATE_HTML action_input=a heading that says 'Welcome to My Website!'"],
]
def chat(purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
if agent_name == "WEB_DEV":
agent = WebDevAgent()
elif agent_name == "AI_SYSTEM_PROMPT":
agent = AiSystemPromptAgent()
elif agent_name == "PYTHON_CODE_DEV":
agent = PythonCodeDevAgent()
else:
agent = WebDevAgent() # Default to WEB_DEV if agent_name is invalid
history = list(run_agent(purpose, history, agent))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
demo.launch()
if __name__ == "__main__":
main() |