File size: 19,763 Bytes
e84be5f
ded0f49
8ffb558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c3b2e
 
8ffb558
 
 
 
 
 
 
 
 
 
 
 
f3c3b2e
8ffb558
9ca8bda
8ffb558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c68ad
8ffb558
 
 
 
 
 
 
e8fb655
8ffb558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import subprocess
import random
from typing import List, Dict, Tuple
from datetime import datetime
import logging

import gradio as gr
from huggingface_hub import InferenceClient

# --- Configuration ---
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"  # Hugging Face model for text generation
MAX_HISTORY_TURNS = 5  # Number of previous turns to include in the prompt
MAX_TOKENS_PER_TURN = 2048  # Maximum number of tokens to generate per turn
VERBOSE_LOGGING = True  # Enable verbose logging for debugging
DEFAULT_AGENT = "WEB_DEV"  # Default agent to use

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",  # Name of the log file
    level=logging.INFO,  # Set the logging level (INFO, DEBUG, etc.)
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Agent Definitions ---
class Agent:
    """Base class for all agents."""

    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description

    def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles an action from the user.

        Args:
            action: The action name.
            action_input: The input for the action.
            history: The conversation history.
            task: The current task.

        Returns:
            A tuple containing the next action name, action input, updated history, and updated task.
        """
        raise NotImplementedError("Agent subclasses must implement handle_action.")

    def get_prompt(self, message: str, history: List[Tuple[str, str]], task: str) -> str:
        """Generates a prompt for the language model.

        Args:
            message: The user's message.
            history: The conversation history.
            task: The current task.

        Returns:
            The prompt string.
        """
        now = datetime.now()
        date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
        prompt = f"""
        {date_time_str}
        Agent: {self.name}
        Task: {task}
        History:
        {self.format_history(history)}
        Message: {message}
        """
        return prompt

    def format_history(self, history: List[Tuple[str, str]]) -> str:
        """Formats the conversation history for the prompt."""
        formatted_history = ""
        for user_message, agent_response in history[-MAX_HISTORY_TURNS:]:
            formatted_history += f"[INST] {user_message} [/INST]\n{agent_response}\n"
        return formatted_history

class WebDevAgent(Agent):
    """Agent for web development tasks."""

    def __init__(self):
        super().__init__(name="WEB_DEV", description="Agent specialized in web development tasks.")

    def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        if action == "SEARCH":
            return self._handle_search_action(action_input, history, task)
        elif action == "GENERATE_HTML":
            return self._handle_generate_html_action(action_input, history, task)
        elif action == "GENERATE_CSS":
            return self._handle_generate_css_action(action_input, history, task)
        elif action == "GENERATE_JS":
            return self._handle_generate_js_action(action_input, history, task)
        elif action == "COMPLETE":
            return "COMPLETE", "COMPLETE", history, task
        else:
            return "MAIN", None, history, task

    def _handle_search_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the SEARCH action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling SEARCH action with input: {action_input}")
        try:
            if "http" in action_input:
                if "<" in action_input:
                    action_input = action_input.strip("<")
                if ">" in action_input:
                    action_input = action_input.strip(">")
                response = i_s(action_input)  # Use i_search for web search
                history.append(("observation: search result is:", response))
            else:
                history.append(("observation: I need a valid URL for the SEARCH action.", ""))
        except Exception as e:
            history.append(("observation:", str(e)))
        return "MAIN", None, history, task

    def _handle_generate_html_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the GENERATE_HTML action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling GENERATE_HTML action with input: {action_input}")
        # Simulate OpenAI's code generation capabilities using Hugging Face
        prompt = self.get_prompt(f"Generate HTML code for a web page that {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```html"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: generated HTML code:", response))
        return "MAIN", None, history, task

    def _handle_generate_css_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the GENERATE_CSS action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling GENERATE_CSS action with input: {action_input}")
        # Simulate OpenAI's code generation capabilities using Hugging Face
        prompt = self.get_prompt(f"Generate CSS code for a web page that {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```css"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: generated CSS code:", response))
        return "MAIN", None, history, task

    def _handle_generate_js_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the GENERATE_JS action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling GENERATE_JS action with input: {action_input}")
        # Simulate OpenAI's code generation capabilities using Hugging Face
        prompt = self.get_prompt(f"Generate JavaScript code for a web page that {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```js"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: generated JavaScript code:", response))
        return "MAIN", None, history, task

class AiSystemPromptAgent(Agent):
    """Agent for generating system prompts."""

    def __init__(self):
        super().__init__(name="AI_SYSTEM_PROMPT", description="Agent specialized in generating system prompts.")

    def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        if action == "GENERATE_PROMPT":
            return self._handle_generate_prompt_action(action_input, history, task)
        elif action == "COMPLETE":
            return "COMPLETE", "COMPLETE", history, task
        else:
            return "MAIN", None, history, task

    def _handle_generate_prompt_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the GENERATE_PROMPT action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling GENERATE_PROMPT action with input: {action_input}")
        # Simulate OpenAI's prompt generation capabilities using Hugging Face
        prompt = self.get_prompt(f"Generate a system prompt for a language model that {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```json"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: generated system prompt:", response))
        return "MAIN", None, history, task

class PythonCodeDevAgent(Agent):
    """Agent for Python code development tasks."""

    def __init__(self):
        super().__init__(name="PYTHON_CODE_DEV", description="Agent specialized in Python code development tasks.")

    def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        if action == "GENERATE_CODE":
            return self._handle_generate_code_action(action_input, history, task)
        elif action == "RUN_CODE":
            return self._handle_run_code_action(action_input, history, task)
        elif action == "COMPLETE":
            return "COMPLETE", "COMPLETE", history, task
        else:
            return "MAIN", None, history, task

    def _handle_generate_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the GENERATE_CODE action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling GENERATE_CODE action with input: {action_input}")
        # Simulate OpenAI's code generation capabilities using Hugging Face
        prompt = self.get_prompt(f"Generate Python code that {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: generated Python code:", response))
        return "MAIN", None, history, task

    def _handle_run_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
        """Handles the RUN_CODE action."""
        if VERBOSE_LOGGING:
            logging.info(f"Calling RUN_CODE action with input: {action_input}")
        # Simulate OpenAI's code execution capabilities using Hugging Face
        prompt = self.get_prompt(f"Run the following Python code and provide the output: {action_input}", history, task)
        response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
        history.append(("observation: code output:", response))
        return "MAIN", None, history, task

# --- Action Handlers ---
def handle_main_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
    """Handles the MAIN action, which is the default action."""
    if VERBOSE_LOGGING:
        logging.info(f"Calling MAIN action with input: {action_input}")
    prompt = agent.get_prompt(action_input, history, task)
    response = run_gpt(prompt, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=MAX_TOKENS_PER_TURN)
    if VERBOSE_LOGGING:
        logging.info(f"Response from model: {response}")
    history.append((action_input, response))
    lines = response.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history.append((line, ""))
            if VERBOSE_LOGGING:
                logging.info(f"Thought: {line}")
        elif line.startswith("action: "):
            action_name, action_input = parse_action(line)
            history.append((line, ""))
            if VERBOSE_LOGGING:
                logging.info(f"Action: {action_name} - {action_input}")
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history.append((line, ""))
            if VERBOSE_LOGGING:
                logging.info(f"Other Output: {line}")
    return "MAIN", None, history, task

def handle_update_task_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
    """Handles the UPDATE-TASK action, which updates the current task."""
    if VERBOSE_LOGGING:
        logging.info(f"Calling UPDATE-TASK action with input: {action_input}")
    prompt = agent.get_prompt(action_input, history, task)
    task = run_gpt(prompt, stop_tokens=[], max_tokens=64).strip("\n")
    history.append(("observation: task has been updated to:", task))
    return "MAIN", None, history, task

def handle_search_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
    """Handles the SEARCH action, which performs a web search."""
    if VERBOSE_LOGGING:
        logging.info(f"Calling SEARCH action with input: {action_input}")
    try:
        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.strip("<")
            if ">" in action_input:
                action_input = action_input.strip(">")
            response = i_s(action_input)  # Use i_search for web search
            history.append(("observation: search result is:", response))
        else:
            history.append(("observation: I need a valid URL for the SEARCH action.", ""))
    except Exception as e:
        history.append(("observation:", str(e)))
    return "MAIN", None, history, task

def handle_complete_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
    """Handles the COMPLETE action, which ends the current task."""
    if VERBOSE_LOGGING:
        logging.info(f"Calling COMPLETE action.")
    task = "END"
    return "COMPLETE", "COMPLETE", history, task

# --- Action Mapping ---
ACTION_HANDLERS: Dict[str, callable] = {
    "MAIN": handle_main_action,
    "UPDATE-TASK": handle_update_task_action,
    "SEARCH": handle_search_action,
    "COMPLETE": handle_complete_action,
}

# --- Utility Functions ---
def run_gpt(prompt: str, stop_tokens: List[str], max_tokens: int) -> str:
    """Runs the language model and returns the generated text."""
    if VERBOSE_LOGGING:
        logging.info(f"Prompt: {prompt}")
    client = InferenceClient(MODEL_NAME)
    resp = client.text_generation(prompt, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
    if VERBOSE_LOGGING:
        logging.info(f"Response: {resp}")
    return resp

def parse_action(line: str) -> Tuple[str, str]:
    """Parses an action line to get the action name and input."""
    parts = line.split(":", 1)
    if len(parts) == 2:
        action_name = parts[0].replace("action", "").strip()
        action_input = parts[1].strip()
    else:
        action_name = parts[0].replace("action", "").strip()
        action_input = ""
    return action_name, action_input

def run_agent(purpose: str, history: List[Tuple[str, str]], agent: Agent) -> List[Tuple[str, str]]:
    """Runs the agent and returns the updated conversation history."""
    task = None
    directory = "./"
    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        if VERBOSE_LOGGING:
            logging.info(f"---")
            logging.info(f"Purpose: {purpose}")
            logging.info(f"Task: {task}")
            logging.info(f"---")
            logging.info(f"History: {history}")
            logging.info(f"---")
        if VERBOSE_LOGGING:
            logging.info(f"Running action: {action_name} - {action_input}")
        try:
            if "RESPONSE" in action_name or "COMPLETE" in action_name:
                action_name = "COMPLETE"
                task = "END"
                return history
            if action_name not in ACTION_HANDLERS:
                action_name = "MAIN"
            if action_name == "" or action_name is None:
                action_name = "MAIN"
            action_handler = ACTION_HANDLERS[action_name]
            action_name, action_input, history, task = action_handler(action_name, action_input, history, task, agent)
            yield history
            if task == "END":
                return history
        except Exception as e:
            history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command", ""))
            logging.error(f"Error in run_agent: {e}")
            return history

# --- Gradio Interface ---
def main():
    with gr.Blocks() as demo:
        gr.Markdown("## FragMixt: Your No-Code Development Powerhouse")
        gr.Markdown("### Agents w/ Agents:  Mastering No-Code Development")

        # Chat Interface
        chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")

        # Input Components
        message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
        purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
        agent_name = gr.Dropdown(label="Agents", choices=[agent.name for agent in [WebDevAgent(), AiSystemPromptAgent(), PythonCodeDevAgent()]], value=DEFAULT_AGENT, interactive=True)
        sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
        temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
        max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
        top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
        repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")

        # Button to submit the message
        submit_button = gr.Button(value="Send")

        # Project Explorer Tab
        with gr.Tab("Project Explorer"):
            project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
            explore_button = gr.Button(value="Explore")
            project_output = gr.Textbox(label="File Tree", lines=20)

        # Chat App Logic Tab
        with gr.Tab("Chat App"):
            history = gr.State([])
            examples = [
                ["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
                ["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
                ["Generate a web page with a heading that says 'Welcome to My Website!'", "action: GENERATE_HTML action_input=a heading that says 'Welcome to My Website!'"],
            ]

        def chat(purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
            if agent_name == "WEB_DEV":
                agent = WebDevAgent()
            elif agent_name == "AI_SYSTEM_PROMPT":
                agent = AiSystemPromptAgent()
            elif agent_name == "PYTHON_CODE_DEV":
                agent = PythonCodeDevAgent()
            else:
                agent = WebDevAgent()  # Default to WEB_DEV if agent_name is invalid
            history = list(run_agent(purpose, history, agent))
            return history, history

        submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])

    demo.launch()

if __name__ == "__main__":
    main()