File size: 10,632 Bytes
fd59a9f
20ca81b
 
611325e
20ca81b
e487958
611325e
 
 
6e48490
 
e487958
 
646c35d
e487958
 
6e48490
611325e
 
 
350b121
 
 
611325e
6e48490
 
 
 
 
 
 
350b121
6e48490
 
 
 
611325e
 
6e48490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e487958
 
 
 
 
 
 
 
20ca81b
611325e
 
 
 
 
 
 
6e48490
 
 
 
 
 
 
 
 
 
 
 
 
e487958
6e48490
 
e487958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646c35d
 
350b121
 
 
 
 
e487958
350b121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e487958
 
 
350b121
e487958
350b121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e48490
350b121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611325e
e487958
 
b5a44cc
 
 
 
e487958
 
 
 
 
 
60499e1
 
e487958
 
 
 
 
8c76f34
6e48490
e487958
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
import nltk
from transformers import pipeline

# Ensure NLTK data is downloaded
nltk.download('punkt')

now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

# --- Set up logging ---
logging.basicConfig(
    filename="app.log",  # Name of the log file
    level=logging.INFO,  # Set the logging level (INFO, DEBUG, etc.)
    format="%(asctime)s - %(levelname)s - %(message)s",
)

agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]

VERBOSE = True
MAX_HISTORY = 5

PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""

LOG_PROMPT = """
PROMPT: {content}
"""

LOG_RESPONSE = """
RESPONSE: {resp}
"""

COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""

ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought: 
What is your next action?
action: 
"""

TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task: 
"""

UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought: 
"""

def format_prompt(message, history, max_history_turns=5):
    prompt = "<s>"
    # Keep only the last 'max_history_turns' turns
    for user_prompt, bot_response in history[-max_history_turns:]:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    purpose,
    **prompt_kwargs,
):
    seed = random.randint(1,1111111111111111)
    logging.info(f"Seed: {seed}")  # Log the seed
    
    content = PREFIX.format(
        date_time_str=date_time_str,
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        logging.info(LOG_PROMPT.format(content))  # Log the prompt
    
    resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=resp))  # Log the response
    return resp

def generate(
    prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
    seed = random.randint(1,1111111111111111)

    if agent_name == "WEB_DEV":
        agent = "You are a helpful AI assistant. You are a web developer."
    elif agent_name == "AI_SYSTEM_PROMPT":
        agent = "You are a helpful AI assistant. You are an AI system."
    elif agent_name == "PYTHON_CODE_DEV":
        agent = "You are a helpful AI assistant. You are a Python code developer."
    else:
        agent = "You are a helpful AI assistant."

    system_prompt = agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    formatted_prompt = f"{system_prompt} {prompt}"
    formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5)  # Truncated history
    logging.info(f"Formatted Prompt: {formatted_prompt}")
    stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text

    if VERBOSE:
        logging.info(LOG_RESPONSE.format(resp=resp))  # Log the response
    return resp

def compress_history(purpose, task, history, directory):
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history
    
def call_search(purpose, task, history, directory, action_input):
    logging.info(f"CALLING SEARCH: {action_input}")
    try:
        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.strip("<")
            if ">" in action_input:
                action_input = action_input.strip(">")
            
            response = i_s(action_input)
            logging.info(f"Search Result: {response}")
            history += "observation: search result is: {}\n".format(response)
        else:
            history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
    except Exception as e:
        history += "observation: {}'\n".format(e)
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    logging.info(f"CALLING MAIN: {action_input}")
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:", "action:","thought:"],
        max_tokens=32000,
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
            logging.info(f"Thought: {line}")
        elif line.startswith("action: "):
            action_name, action_input = parse_action(line)
            logging.info(f"Action: {action_name} - {action_input}")
            history += "{}\n".format(line)
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "{}\n".format(line)
            logging.info(f"Other Output: {line}")
    return "MAIN", None, history, task

def call_set_task(purpose, task, history, directory, action_input):
    logging.info(f"CALLING SET_TASK: {action_input}")
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=64,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task

def end_fn(purpose, task, history, directory, action_input):
    logging.info(f"CALLING END_FN: {action_input}")
    task = "END"
    return "COMPLETE", "COMPLETE", history, task

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,
}

def run_action(purpose, task, history, directory, action_name, action_input):
    logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
    try:
        if "RESPONSE" in action_name or "COMPLETE" in action_name:
            action_name="COMPLETE"
            task="END"
            return action_name, "COMPLETE", history, task
    
        # compress the history when it is long
        if len(history.split("\n")) > MAX_HISTORY:
            logging.info("COMPRESSING HISTORY")
            history = compress_history(purpose, task, history, directory)
        if not action_name in NAME_TO_FUNC:
            action_name="MAIN"
        if action_name == "" or action_name == None:
            action_name="MAIN"
        assert action_name in NAME_TO_FUNC
    
        logging.info(f"RUN: {action_name} - {action_input}")
        return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
    except Exception as e:
        history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
        logging.error(f"Error in run_action: {e}")
        return "MAIN", None, history, task

def run(purpose, history):
    task = None
    directory = "./"
    if history:
        history = str(history).strip("[]")
    if not history:
        history = ""
    
    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        logging.info(f"---")
        logging.info(f"Purpose: {purpose}")
        logging.info(f"Task: {task}")
        logging.info(f"---")
        logging.info(f"History: {history}")
        logging.info(f"---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        yield (history)
        if task == "END":
            return (history)

def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
    """Generates text in chunks to avoid token limit errors."""
    sentences = nltk.sent_tokenize(input_text)
    generated_text = []
    generator = pipeline('text-generation', model=model)

    for sentence in sentences:
        # Tokenize the sentence and check if it's within the limit
        tokens = generator.tokenizer(sentence).input_ids
        if len(tokens) + max_tokens_to_generate <= 32768:
            # Generate text for this chunk
            response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
            generated_text.append(response[0]['generated_text'])
        else:
            # Handle cases where the sentence is too long
            print(f"Sentence too long: {sentence}") 

    return ''.join(generated_text)

# Gradio Interface
def gradio_interface(purpose, history):
    try:
        history = json.loads(history) if history else []
    except json.JSONDecodeError:
        history = []
    result = run(purpose, history)
    return next(result)

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter the purpose here..."),
        gr.Textbox(lines=10, placeholder="Enter the history here (JSON format)...")
    ],
    outputs="text",
    title="AI Assistant",
    description="An AI assistant that helps with various tasks."
)

if __name__ == "__main__":
    iface.launch()