Spaces:
Sleeping
Sleeping
File size: 10,632 Bytes
fd59a9f 20ca81b 611325e 20ca81b e487958 611325e 6e48490 e487958 646c35d e487958 6e48490 611325e 350b121 611325e 6e48490 350b121 6e48490 611325e 6e48490 e487958 20ca81b 611325e 6e48490 e487958 6e48490 e487958 646c35d 350b121 e487958 350b121 e487958 350b121 e487958 350b121 6e48490 350b121 611325e e487958 b5a44cc e487958 60499e1 e487958 8c76f34 6e48490 e487958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
import nltk
from transformers import pipeline
# Ensure NLTK data is downloaded
nltk.download('punkt')
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# --- Set up logging ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
VERBOSE = True
MAX_HISTORY = 5
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
def format_prompt(message, history, max_history_turns=5):
prompt = "<s>"
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response
return resp
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
seed = random.randint(1,1111111111111111)
if agent_name == "WEB_DEV":
agent = "You are a helpful AI assistant. You are a web developer."
elif agent_name == "AI_SYSTEM_PROMPT":
agent = "You are a helpful AI assistant. You are an AI system."
elif agent_name == "PYTHON_CODE_DEV":
agent = "You are a helpful AI assistant. You are a Python code developer."
else:
agent = "You are a helpful AI assistant."
system_prompt = agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = f"{system_prompt} {prompt}"
formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history
logging.info(f"Formatted Prompt: {formatted_prompt}")
stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response
return resp
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
logging.info(f"CALLING SEARCH: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
logging.info(f"Search Result: {response}")
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
logging.info(f"CALLING MAIN: {action_input}")
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=32000,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
logging.info(f"CALLING SET_TASK: {action_input}")
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
logging.info(f"CALLING END_FN: {action_input}")
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name="COMPLETE"
task="END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
logging.info("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name="MAIN"
if action_name == "" or action_name == None:
action_name="MAIN"
assert action_name in NAME_TO_FUNC
logging.info(f"RUN: {action_name} - {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
logging.error(f"Error in run_action: {e}")
return "MAIN", None, history, task
def run(purpose, history):
task = None
directory = "./"
if history:
history = str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
if task == "END":
return (history)
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
"""Generates text in chunks to avoid token limit errors."""
sentences = nltk.sent_tokenize(input_text)
generated_text = []
generator = pipeline('text-generation', model=model)
for sentence in sentences:
# Tokenize the sentence and check if it's within the limit
tokens = generator.tokenizer(sentence).input_ids
if len(tokens) + max_tokens_to_generate <= 32768:
# Generate text for this chunk
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
generated_text.append(response[0]['generated_text'])
else:
# Handle cases where the sentence is too long
print(f"Sentence too long: {sentence}")
return ''.join(generated_text)
# Gradio Interface
def gradio_interface(purpose, history):
try:
history = json.loads(history) if history else []
except json.JSONDecodeError:
history = []
result = run(purpose, history)
return next(result)
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Enter the purpose here..."),
gr.Textbox(lines=10, placeholder="Enter the history here (JSON format)...")
],
outputs="text",
title="AI Assistant",
description="An AI assistant that helps with various tasks."
)
if __name__ == "__main__":
iface.launch() |