Spaces:
Sleeping
Sleeping
File size: 5,081 Bytes
675c9d3 bd6c875 3dfa6ba bd6c875 675c9d3 3a881df bd6c875 675c9d3 c27429b 675c9d3 3a881df 675c9d3 bd6c875 3a881df bd6c875 3a881df bd6c875 3a881df 675c9d3 bd6c875 3a881df bd6c875 3a881df bd6c875 3a881df bd6c875 3a881df bd6c875 3a881df bd6c875 3a881df bd6c875 675c9d3 bd6c875 675c9d3 bd6c875 675c9d3 bd6c875 675c9d3 bd6c875 675c9d3 c27429b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient, cached_download
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
API_KEY = "YOUR_API_KEY"
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Agent: {agent_name}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
prompt = ""
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"Human: {user_prompt}\nAssistant: {bot_response}\n"
prompt += f"Human: {message}\nAssistant:"
return prompt
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# Create a text generation pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Prepare the full prompt
date_time_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
full_prompt = PREFIX.format(
date_time_str=date_time_str,
purpose=sys_prompt,
agent_name=agent_name
) + format_prompt(prompt, history)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=full_prompt))
# Generate response
response = generator(
full_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True
)[0]['generated_text']
# Extract the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=assistant_response))
return assistant_response
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
["Generate a simple HTML page with a heading and a paragraph.", " |