MistriDevLab / app.py
acecalisto3's picture
Update app.py
0c59574 verified
raw
history blame
17 kB
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient, cached_download
from safe_search import safe_search
from i_search import google, i_search as i_s
# --- Configuration ---
VERBOSE = True # Enable verbose logging
MAX_HISTORY = 5 # Maximum history turns to keep
MAX_TOKENS = 2048 # Maximum tokens for LLM responses
TEMPERATURE = 0.7 # Temperature for LLM responses
TOP_P = 0.8 # Top-p (nucleus sampling) for LLM responses
REPETITION_PENALTY = 1.5 # Repetition penalty for LLM responses
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Name of the LLM model
import os
API_KEY = os.getenv("HUGGINGFACE_API_KEY") # Ensure you set the HUGGINGFACE_API_KEY environment variable
# --- Logging Setup ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
"""Formats the prompt for the LLM, including the message and relevant history."""
prompt = " "
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/ "
prompt += f" {bot_response}"
prompt += f"[INST] {message} [/ "
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict
) -> str:
"""Runs the LLM with the given prompt and parameters."""
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp)) # Log the response
return resp
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates text using the LLM."""
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp)) # Log the response
return resp
def compress_history(purpose: str, task: str, history: List[Tuple[str, str]], directory: str) -> str:
"""Compresses the history into a shorter summary."""
resp = run_llm(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Performs a search based on the action input."""
logging.info(f"CALLING SEARCH: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
logging.info(f"Search Result: {response}")
history.append(("observation: search result is: {}".format(response), ""))
else:
history.append(("observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n", ""))
except Exception as e:
history.append(("observation: {}\n".format(e), ""))
return "MAIN", None, history, task
def call_main(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the main agent interaction loop."""
logging.info(f"CALLING MAIN: {action_input}")
resp = run_llm(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history.append((line, ""))
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history.append((line, ""))
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history.append((line, ""))
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def call_set_task(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Sets a new task for the agent."""
logging.info(f"CALLING SET_TASK: {action_input}")
task = run_llm(
TASK_PROMPT,
stop_tokens=[],
purpose=purpose,
task=task,
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history),
).strip("\n")
history.append(("observation: task has been updated to: {}".format(task), ""))
return "MAIN", None, history, task
def end_fn(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Ends the agent interaction."""
logging.info(f"CALLING END_FN: {action_input}")
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC: Dict[str, callable] = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_name: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Executes the specified action."""
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name = "COMPLETE"
task = "END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history) > MAX_HISTORY:
logging.info("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name = "MAIN"
if action_name == "" or action_name is None:
action_name = "MAIN"
assert action_name in NAME_TO_FUNC
logging.info(f"RUN: {action_name} - {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n", ""))
logging.error(f"Error in run_action: {e}")
return "MAIN", None, history, task
def run(purpose: str, history: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
"""Main agent interaction loop."""
task = None
directory = "./"
if history:
history = str(history).strip("[]")
if not history:
history = []
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
if task == "END":
return (history)
################################################
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 5) -> str:
"""Formats the prompt for the LLM, including the message and relevant history."""
prompt = " "
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/ "
prompt += f" {bot_response}"
prompt += f"[INST] {message} [/ "
return prompt
def parse_action(line: str) -> Tuple[str, str]:
"""Parses the action line to get the action name and input."""
parts = line.split(":", 1)
if len(parts) == 2:
action_name = parts[0].replace("action", "").strip()
action_input = parts[1].strip()
else:
action_name = parts[0].replace("action", "").strip()
action_input = ""
return action_name, action_input
def main():
"""Main function to run the Gradio interface."""
global client
# Initialize the LLM client with your API key
try:
client = InferenceClient(
MODEL_NAME,
token=API_KEY # Replace with your actual API key
)
except Exception as e:
logging.error(f"Error initializing LLM client: {e}")
print("Error initializing LLM client. Please check your API key.")
return
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
["Generate a simple HTML page with a heading and a paragraph.", "```html\n<!DOCTYPE html>\n<html>\n<head>\n<title>My Simple Page</title>\n</head>\n<body>\n<h1>Welcome to my page!</h1>\n<p>This is a simple paragraph.</p>\n</body>\n</html>\n```"],
["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"],
["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"],
]
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
"""Handles the chat interaction."""
prompt = format_prompt(message, history)
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
history.append((message, response))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
# Project Explorer Logic
def explore_project(project_path: str) -> str:
"""Explores the project directory and returns a file tree."""
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(explore_project, inputs=[project_path], outputs=[project_output])
demo.launch()
if __name__ == "__main__":
main()
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/terminal', methods=['POST'])
def terminal():
command = request.json.get('command')
if not command:
return jsonify({'error': 'No command provided'}), 400
try:
result = subprocess.run(command, shell=True, capture_output=True, text=True)
return jsonify({'output': result.stdout, 'error': result.stderr})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(port=5000)