Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
import random | |
import time | |
from typing import Dict, List, Tuple | |
from datetime import datetime | |
import logging | |
import gradio as gr | |
from huggingface_hub import InferenceClient, cached_download | |
from safe_search import safe_search | |
from i_search import google, i_search as i_s | |
# --- Configuration --- | |
VERBOSE = True # Enable verbose logging | |
MAX_HISTORY = 5 # Maximum history turns to keep | |
MAX_TOKENS = 2048 # Maximum tokens for LLM responses | |
TEMPERATURE = 0.7 # Temperature for LLM responses | |
TOP_P = 0.8 # Top-p (nucleus sampling) for LLM responses | |
REPETITION_PENALTY = 1.5 # Repetition penalty for LLM responses | |
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Name of the LLM model | |
import os | |
API_KEY = os.getenv("HUGGINGFACE_API_KEY") # Ensure you set the HUGGINGFACE_API_KEY environment variable | |
# --- Logging Setup --- | |
logging.basicConfig( | |
filename="app.log", # Name of the log file | |
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.) | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
) | |
# --- Agents --- | |
agents = [ | |
"WEB_DEV", | |
"AI_SYSTEM_PROMPT", | |
"PYTHON_CODE_DEV", | |
"DATA_SCIENCE", | |
"UI_UX_DESIGN", | |
] | |
# --- Prompts --- | |
PREFIX = """ | |
{date_time_str} | |
Purpose: {purpose} | |
Safe Search: {safe_search} | |
""" | |
LOG_PROMPT = """ | |
PROMPT: {content} | |
""" | |
LOG_RESPONSE = """ | |
RESPONSE: {resp} | |
""" | |
COMPRESS_HISTORY_PROMPT = """ | |
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens. | |
History: | |
{history} | |
""" | |
ACTION_PROMPT = """ | |
You are a helpful AI assistant. You are working on the task: {task} | |
Your current history is: | |
{history} | |
What is your next thought? | |
thought: | |
What is your next action? | |
action: | |
""" | |
TASK_PROMPT = """ | |
You are a helpful AI assistant. Your current history is: | |
{history} | |
What is the next task? | |
task: | |
""" | |
UNDERSTAND_TEST_RESULTS_PROMPT = """ | |
You are a helpful AI assistant. The test results are: | |
{test_results} | |
What do you want to know about the test results? | |
thought: | |
""" | |
# --- Functions --- | |
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str: | |
"""Formats the prompt for the LLM, including the message and relevant history.""" | |
prompt = " " | |
# Keep only the last 'max_history_turns' turns | |
for user_prompt, bot_response in history[-max_history_turns:]: | |
prompt += f"[INST] {user_prompt} [/ " | |
prompt += f" {bot_response}" | |
prompt += f"[INST] {message} [/ " | |
return prompt | |
def run_llm( | |
prompt_template: str, | |
stop_tokens: List[str], | |
purpose: str, | |
**prompt_kwargs: Dict | |
) -> str: | |
"""Runs the LLM with the given prompt and parameters.""" | |
seed = random.randint(1, 1111111111111111) | |
logging.info(f"Seed: {seed}") # Log the seed | |
content = PREFIX.format( | |
date_time_str=date_time_str, | |
purpose=purpose, | |
safe_search=safe_search, | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
logging.info(LOG_PROMPT.format(content)) # Log the prompt | |
resp = client.text_generation(content, max_new_tokens=MAX_TOKENS, stop_sequences=stop_tokens, temperature=TEMPERATURE, top_p=TOP_P, repetition_penalty=REPETITION_PENALTY) | |
if VERBOSE: | |
logging.info(LOG_RESPONSE.format(resp)) # Log the response | |
return resp | |
def generate( | |
prompt: str, | |
history: List[Tuple[str, str]], | |
agent_name: str = agents[0], | |
sys_prompt: str = "", | |
temperature: float = TEMPERATURE, | |
max_new_tokens: int = MAX_TOKENS, | |
top_p: float = TOP_P, | |
repetition_penalty: float = REPETITION_PENALTY, | |
) -> str: | |
"""Generates text using the LLM.""" | |
content = PREFIX.format( | |
date_time_str=date_time_str, | |
purpose=purpose, | |
safe_search=safe_search, | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
logging.info(LOG_PROMPT.format(content)) # Log the prompt | |
stream = client.text_generation(content, stream=True, details=True, return_full_text=False, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
if VERBOSE: | |
logging.info(LOG_RESPONSE.format(resp)) # Log the response | |
return resp | |
def compress_history(purpose: str, task: str, history: List[Tuple[str, str]], directory: str) -> str: | |
"""Compresses the history into a shorter summary.""" | |
resp = run_llm( | |
COMPRESS_HISTORY_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
purpose=purpose, | |
task=task, | |
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), | |
) | |
history = "observation: {}\n".format(resp) | |
return history | |
def call_search(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Performs a search based on the action input.""" | |
logging.info(f"CALLING SEARCH: {action_input}") | |
try: | |
if "http" in action_input: | |
if "<" in action_input: | |
action_input = action_input.strip("<") | |
if ">" in action_input: | |
action_input = action_input.strip(">") | |
response = i_s(action_input) | |
logging.info(f"Search Result: {response}") | |
history.append(("observation: search result is: {}".format(response), "")) | |
else: | |
history.append(("observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n", "")) | |
except Exception as e: | |
history.append(("observation: {}\n".format(e), "")) | |
return "MAIN", None, history, task | |
def call_main(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the main agent interaction loop.""" | |
logging.info(f"CALLING MAIN: {action_input}") | |
resp = run_llm( | |
ACTION_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
purpose=purpose, | |
task=task, | |
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), | |
) | |
lines = resp.strip().strip("\n").split("\n") | |
for line in lines: | |
if line == "": | |
continue | |
if line.startswith("thought: "): | |
history.append((line, "")) | |
logging.info(f"Thought: {line}") | |
elif line.startswith("action: "): | |
action_name, action_input = parse_action(line) | |
logging.info(f"Action: {action_name} - {action_input}") | |
history.append((line, "")) | |
if "COMPLETE" in action_name or "COMPLETE" in action_input: | |
task = "END" | |
return action_name, action_input, history, task | |
else: | |
return action_name, action_input, history, task | |
else: | |
history.append((line, "")) | |
logging.info(f"Other Output: {line}") | |
return "MAIN", None, history, task | |
def call_set_task(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Sets a new task for the agent.""" | |
logging.info(f"CALLING SET_TASK: {action_input}") | |
task = run_llm( | |
TASK_PROMPT, | |
stop_tokens=[], | |
purpose=purpose, | |
task=task, | |
history="\n".join(f"[INST] {user_prompt} [/] {bot_response}" for user_prompt, bot_response in history), | |
).strip("\n") | |
history.append(("observation: task has been updated to: {}".format(task), "")) | |
return "MAIN", None, history, task | |
def end_fn(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Ends the agent interaction.""" | |
logging.info(f"CALLING END_FN: {action_input}") | |
task = "END" | |
return "COMPLETE", "COMPLETE", history, task | |
NAME_TO_FUNC: Dict[str, callable] = { | |
"MAIN": call_main, | |
"UPDATE-TASK": call_set_task, | |
"SEARCH": call_search, | |
"COMPLETE": end_fn, | |
} | |
def run_action(purpose: str, task: str, history: List[Tuple[str, str]], directory: str, action_name: str, action_input: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Executes the specified action.""" | |
logging.info(f"RUNNING ACTION: {action_name} - {action_input}") | |
try: | |
if "RESPONSE" in action_name or "COMPLETE" in action_name: | |
action_name = "COMPLETE" | |
task = "END" | |
return action_name, "COMPLETE", history, task | |
# compress the history when it is long | |
if len(history) > MAX_HISTORY: | |
logging.info("COMPRESSING HISTORY") | |
history = compress_history(purpose, task, history, directory) | |
if not action_name in NAME_TO_FUNC: | |
action_name = "MAIN" | |
if action_name == "" or action_name is None: | |
action_name = "MAIN" | |
assert action_name in NAME_TO_FUNC | |
logging.info(f"RUN: {action_name} - {action_input}") | |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) | |
except Exception as e: | |
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n", "")) | |
logging.error(f"Error in run_action: {e}") | |
return "MAIN", None, history, task | |
def run(purpose: str, history: List[Tuple[str, str]]) -> List[Tuple[str, str]]: | |
"""Main agent interaction loop.""" | |
task = None | |
directory = "./" | |
if history: | |
history = str(history).strip("[]") | |
if not history: | |
history = [] | |
action_name = "UPDATE-TASK" if task is None else "MAIN" | |
action_input = None | |
while True: | |
logging.info(f"---") | |
logging.info(f"Purpose: {purpose}") | |
logging.info(f"Task: {task}") | |
logging.info(f"---") | |
logging.info(f"History: {history}") | |
logging.info(f"---") | |
action_name, action_input, history, task = run_action( | |
purpose, | |
task, | |
history, | |
directory, | |
action_name, | |
action_input, | |
) | |
yield (history) | |
if task == "END": | |
return (history) | |
################################################ | |
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 5) -> str: | |
"""Formats the prompt for the LLM, including the message and relevant history.""" | |
prompt = " " | |
# Keep only the last 'max_history_turns' turns | |
for user_prompt, bot_response in history[-max_history_turns:]: | |
prompt += f"[INST] {user_prompt} [/ " | |
prompt += f" {bot_response}" | |
prompt += f"[INST] {message} [/ " | |
return prompt | |
def parse_action(line: str) -> Tuple[str, str]: | |
"""Parses the action line to get the action name and input.""" | |
parts = line.split(":", 1) | |
if len(parts) == 2: | |
action_name = parts[0].replace("action", "").strip() | |
action_input = parts[1].strip() | |
else: | |
action_name = parts[0].replace("action", "").strip() | |
action_input = "" | |
return action_name, action_input | |
def main(): | |
"""Main function to run the Gradio interface.""" | |
global client | |
# Initialize the LLM client with your API key | |
try: | |
client = InferenceClient( | |
MODEL_NAME, | |
token=API_KEY # Replace with your actual API key | |
) | |
except Exception as e: | |
logging.error(f"Error initializing LLM client: {e}") | |
print("Error initializing LLM client. Please check your API key.") | |
return | |
with gr.Blocks() as demo: | |
gr.Markdown("## FragMixt: The No-Code Development Powerhouse") | |
gr.Markdown("### Your AI-Powered Development Companion") | |
# Chat Interface | |
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel") | |
# Input Components | |
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") | |
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?") | |
agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True) | |
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True) | |
temperature = gr.Slider(label="Temperature", value=TEMPERATURE, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs") | |
max_new_tokens = gr.Slider(label="Max new tokens", value=MAX_TOKENS, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens") | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=TOP_P, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens") | |
repetition_penalty = gr.Slider(label="Repetition penalty", value=REPETITION_PENALTY, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") | |
# Button to submit the message | |
submit_button = gr.Button(value="Send") | |
# Project Explorer Tab | |
with gr.Tab("Project Explorer"): | |
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project") | |
explore_button = gr.Button(value="Explore") | |
project_output = gr.Textbox(label="File Tree", lines=20) | |
# Chat App Logic Tab | |
with gr.Tab("Chat App"): | |
history = gr.State([]) | |
examples = [ | |
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."], | |
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"], | |
["Generate a simple HTML page with a heading and a paragraph.", "```html\n<!DOCTYPE html>\n<html>\n<head>\n<title>My Simple Page</title>\n</head>\n<body>\n<h1>Welcome to my page!</h1>\n<p>This is a simple paragraph.</p>\n</body>\n</html>\n```"], | |
["Create a basic SQL query to select all data from a table named 'users'.", "```sql\nSELECT * FROM users;\n```"], | |
["Design a user interface for a mobile app that allows users to track their daily expenses.", "Here's a basic UI design for a mobile expense tracker app:\n\n**Screen 1: Home**\n- Top: App Name and Balance Display\n- Middle: List of Recent Transactions (Date, Description, Amount)\n- Bottom: Buttons for Add Expense, Add Income, View Categories\n\n**Screen 2: Add Expense**\n- Input fields for Date, Category, Description, Amount\n- Buttons for Save, Cancel\n\n**Screen 3: Expense Categories**\n- List of expense categories (e.g., Food, Transportation, Entertainment)\n- Option to add/edit categories\n\n**Screen 4: Reports**\n- Charts and graphs to visualize spending by category, date range, etc.\n- Filters to customize the reports"], | |
] | |
def chat(purpose: str, message: str, agent_name: str, sys_prompt: str, temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]: | |
"""Handles the chat interaction.""" | |
prompt = format_prompt(message, history) | |
response = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty) | |
history.append((message, response)) | |
return history, history | |
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history]) | |
# Project Explorer Logic | |
def explore_project(project_path: str) -> str: | |
"""Explores the project directory and returns a file tree.""" | |
try: | |
tree = subprocess.check_output(["tree", project_path]).decode("utf-8") | |
return tree | |
except Exception as e: | |
return f"Error exploring project: {e}" | |
explore_button.click(explore_project, inputs=[project_path], outputs=[project_output]) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |
from flask import Flask, request, jsonify | |
app = Flask(__name__) | |
def terminal(): | |
command = request.json.get('command') | |
if not command: | |
return jsonify({'error': 'No command provided'}), 400 | |
try: | |
result = subprocess.run(command, shell=True, capture_output=True, text=True) | |
return jsonify({'output': result.stdout, 'error': result.stderr}) | |
except Exception as e: | |
return jsonify({'error': str(e)}), 500 | |
if __name__ == '__main__': | |
app.run(port=5000) | |