Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
import random | |
from typing import List, Dict, Tuple | |
from datetime import datetime | |
import logging | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# --- Configuration --- | |
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Hugging Face model for text generation | |
MAX_HISTORY_TURNS = 5 # Number of previous turns to include in the prompt | |
MAX_TOKENS_PER_TURN = 2048 # Maximum number of tokens to generate per turn | |
VERBOSE_LOGGING = True # Enable verbose logging for debugging | |
DEFAULT_AGENT = "WEB_DEV" # Default agent to use | |
# --- Logging Setup --- | |
logging.basicConfig( | |
filename="app.log", # Name of the log file | |
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.) | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
) | |
# --- Agent Definitions --- | |
class Agent: | |
"""Base class for all agents.""" | |
def __init__(self, name: str, description: str): | |
self.name = name | |
self.description = description | |
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles an action from the user. | |
Args: | |
action: The action name. | |
action_input: The input for the action. | |
history: The conversation history. | |
task: The current task. | |
Returns: | |
A tuple containing the next action name, action input, updated history, and updated task. | |
""" | |
raise NotImplementedError("Agent subclasses must implement handle_action.") | |
def get_prompt(self, message: str, history: List[Tuple[str, str]], task: str) -> str: | |
"""Generates a prompt for the language model. | |
Args: | |
message: The user's message. | |
history: The conversation history. | |
task: The current task. | |
Returns: | |
The prompt string. | |
""" | |
now = datetime.now() | |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") | |
prompt = f""" | |
{date_time_str} | |
Agent: {self.name} | |
Task: {task} | |
History: | |
{self.format_history(history)} | |
Message: {message} | |
""" | |
return prompt | |
def format_history(self, history: List[Tuple[str, str]]) -> str: | |
"""Formats the conversation history for the prompt.""" | |
formatted_history = "" | |
for user_message, agent_response in history[-MAX_HISTORY_TURNS:]: | |
formatted_history += f"[INST] {user_message} [/INST]\n{agent_response}\n" | |
return formatted_history | |
class WebDevAgent(Agent): | |
"""Agent for web development tasks.""" | |
def __init__(self): | |
super().__init__(name="WEB_DEV", description="Agent specialized in web development tasks.") | |
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
if action == "SEARCH": | |
return self._handle_search_action(action_input, history, task) | |
elif action == "GENERATE_HTML": | |
return self._handle_generate_html_action(action_input, history, task) | |
elif action == "GENERATE_CSS": | |
return self._handle_generate_css_action(action_input, history, task) | |
elif action == "GENERATE_JS": | |
return self._handle_generate_js_action(action_input, history, task) | |
elif action == "COMPLETE": | |
return "COMPLETE", "COMPLETE", history, task | |
else: | |
return "MAIN", None, history, task | |
def _handle_search_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the SEARCH action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling SEARCH action with input: {action_input}") | |
try: | |
if "http" in action_input: | |
if "<" in action_input: | |
action_input = action_input.strip("<") | |
if ">" in action_input: | |
action_input = action_input.strip(">") | |
response = i_s(action_input) # Use i_search for web search | |
history.append(("observation: search result is:", response)) | |
else: | |
history.append(("observation: I need a valid URL for the SEARCH action.", "")) | |
except Exception as e: | |
history.append(("observation:", str(e))) | |
return "MAIN", None, history, task | |
def _handle_generate_html_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the GENERATE_HTML action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling GENERATE_HTML action with input: {action_input}") | |
# Simulate OpenAI's code generation capabilities using Hugging Face | |
prompt = self.get_prompt(f"Generate HTML code for a web page that {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```html"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: generated HTML code:", response)) | |
return "MAIN", None, history, task | |
def _handle_generate_css_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the GENERATE_CSS action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling GENERATE_CSS action with input: {action_input}") | |
# Simulate OpenAI's code generation capabilities using Hugging Face | |
prompt = self.get_prompt(f"Generate CSS code for a web page that {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```css"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: generated CSS code:", response)) | |
return "MAIN", None, history, task | |
def _handle_generate_js_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the GENERATE_JS action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling GENERATE_JS action with input: {action_input}") | |
# Simulate OpenAI's code generation capabilities using Hugging Face | |
prompt = self.get_prompt(f"Generate JavaScript code for a web page that {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```js"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: generated JavaScript code:", response)) | |
return "MAIN", None, history, task | |
class AiSystemPromptAgent(Agent): | |
"""Agent for generating system prompts.""" | |
def __init__(self): | |
super().__init__(name="AI_SYSTEM_PROMPT", description="Agent specialized in generating system prompts.") | |
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
if action == "GENERATE_PROMPT": | |
return self._handle_generate_prompt_action(action_input, history, task) | |
elif action == "COMPLETE": | |
return "COMPLETE", "COMPLETE", history, task | |
else: | |
return "MAIN", None, history, task | |
def _handle_generate_prompt_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the GENERATE_PROMPT action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling GENERATE_PROMPT action with input: {action_input}") | |
# Simulate OpenAI's prompt generation capabilities using Hugging Face | |
prompt = self.get_prompt(f"Generate a system prompt for a language model that {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```json"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: generated system prompt:", response)) | |
return "MAIN", None, history, task | |
class PythonCodeDevAgent(Agent): | |
"""Agent for Python code development tasks.""" | |
def __init__(self): | |
super().__init__(name="PYTHON_CODE_DEV", description="Agent specialized in Python code development tasks.") | |
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
if action == "GENERATE_CODE": | |
return self._handle_generate_code_action(action_input, history, task) | |
elif action == "RUN_CODE": | |
return self._handle_run_code_action(action_input, history, task) | |
elif action == "COMPLETE": | |
return "COMPLETE", "COMPLETE", history, task | |
else: | |
return "MAIN", None, history, task | |
def _handle_generate_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the GENERATE_CODE action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling GENERATE_CODE action with input: {action_input}") | |
# Simulate OpenAI's code generation capabilities using Hugging Face | |
prompt = self.get_prompt(f"Generate Python code that {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: generated Python code:", response)) | |
return "MAIN", None, history, task | |
def _handle_run_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the RUN_CODE action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling RUN_CODE action with input: {action_input}") | |
# Simulate OpenAI's code execution capabilities using Hugging Face | |
prompt = self.get_prompt(f"Run the following Python code and provide the output: {action_input}", history, task) | |
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN) | |
history.append(("observation: code output:", response)) | |
return "MAIN", None, history, task | |
# --- Action Handlers --- | |
def handle_main_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the MAIN action, which is the default action.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling MAIN action with input: {action_input}") | |
prompt = agent.get_prompt(action_input, history, task) | |
response = run_gpt(prompt, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=MAX_TOKENS_PER_TURN) | |
if VERBOSE_LOGGING: | |
logging.info(f"Response from model: {response}") | |
history.append((action_input, response)) | |
lines = response.strip().strip("\n").split("\n") | |
for line in lines: | |
if line == "": | |
continue | |
if line.startswith("thought: "): | |
history.append((line, "")) | |
if VERBOSE_LOGGING: | |
logging.info(f"Thought: {line}") | |
elif line.startswith("action: "): | |
action_name, action_input = parse_action(line) | |
history.append((line, "")) | |
if VERBOSE_LOGGING: | |
logging.info(f"Action: {action_name} - {action_input}") | |
if "COMPLETE" in action_name or "COMPLETE" in action_input: | |
task = "END" | |
return action_name, action_input, history, task | |
else: | |
return action_name, action_input, history, task | |
else: | |
history.append((line, "")) | |
if VERBOSE_LOGGING: | |
logging.info(f"Other Output: {line}") | |
return "MAIN", None, history, task | |
def handle_update_task_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the UPDATE-TASK action, which updates the current task.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling UPDATE-TASK action with input: {action_input}") | |
prompt = agent.get_prompt(action_input, history, task) | |
task = run_gpt(prompt, stop_tokens=[], max_tokens=64).strip("\n") | |
history.append(("observation: task has been updated to:", task)) | |
return "MAIN", None, history, task | |
def handle_search_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the SEARCH action, which performs a web search.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling SEARCH action with input: {action_input}") | |
try: | |
if "http" in action_input: | |
if "<" in action_input: | |
action_input = action_input.strip("<") | |
if ">" in action_input: | |
action_input = action_input.strip(">") | |
response = i_s(action_input) # Use i_search for web search | |
history.append(("observation: search result is:", response)) | |
else: | |
history.append(("observation: I need a valid URL for the SEARCH action.", "")) | |
except Exception as e: | |
history.append(("observation:", str(e))) | |
return "MAIN", None, history, task | |
def handle_complete_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]: | |
"""Handles the COMPLETE action, which ends the current task.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Calling COMPLETE action.") | |
task = "END" | |
return "COMPLETE", "COMPLETE", history, task | |
# --- Action Mapping --- | |
ACTION_HANDLERS: Dict[str, callable] = { | |
"MAIN": handle_main_action, | |
"UPDATE-TASK": handle_update_task_action, | |
"SEARCH": handle_search_action, | |
"COMPLETE": handle_complete_action, | |
} | |
# --- Utility Functions --- | |
def run_gpt(prompt: str, stop_tokens: List[str], max_tokens: int) -> str: | |
"""Runs the language model and returns the generated text.""" | |
if VERBOSE_LOGGING: | |
logging.info(f"Prompt: {prompt}") | |
client = InferenceClient(MODEL_NAME) | |
resp = client.text_generation(prompt, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5) | |
if VERBOSE_LOGGING: | |
logging.info(f"Response: {resp}") | |
return resp | |
def parse_action(line: str) -> Tuple[str, str]: | |
"""Parses an action line to get the action name and input.""" | |
parts = line.split(":", 1) | |
if len(parts) == 2: | |
action_name = parts[0].replace("action", "").strip() | |
action_input = parts[1].strip() | |
else: | |
action_name = parts[0].replace("action", "").strip() | |
action_input = "" | |
return action_name, action_input | |
def run_agent(purpose: str, history: List[Tuple[str, str]], agent: Agent) -> List[Tuple[str, str]]: | |
"""Runs the agent and returns the updated conversation history.""" | |
task = None | |
directory = "./" | |
action_name = "UPDATE-TASK" if task is None else "MAIN" | |
action_input = None | |
while True: | |
if VERBOSE_LOGGING: | |
logging.info(f"---") | |
logging.info(f"Purpose: {purpose}") | |
logging.info(f"Task: {task}") | |
logging.info(f"---") | |
logging.info(f"History: {history}") | |
logging.info(f"---") | |
if VERBOSE_LOGGING: | |
logging.info(f"Running action: {action_name} - {action_input}") | |
try: | |
if "RESPONSE" in action_name or "COMPLETE" in action_name: | |
action_name = "COMPLETE" | |
task = "END" | |
return history | |
if action_name not in ACTION_HANDLERS: | |
action_name = "MAIN" | |
if action_name == "" or action_name is None: | |
action_name = "MAIN" | |
action_handler = ACTION_HANDLERS[action_name] | |
action_name, action_input, history, task = action_handler(action_name, action_input, history, task, agent) | |
yield history | |
if task == "END": | |
return history | |
except Exception as e: | |
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command", "")) | |
logging.error(f"Error in run_agent: {e}") | |
return history | |
# --- Gradio Interface --- | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## FragMixt: Your No-Code Development Powerhouse") | |
gr.Markdown("### Agents w/ Agents: Mastering No-Code Development") | |
# Chat Interface | |
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel") | |
# Input Components | |
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") | |
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?") | |
agent_name = gr.Dropdown(label="Agents", choices=[agent.name for agent in [WebDevAgent(), AiSystemPromptAgent(), PythonCodeDevAgent()]], value=DEFAULT_AGENT, interactive=True) | |
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True) | |
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs") | |
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens") | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens") | |
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") | |
# Button to submit the message | |
submit_button = gr.Button(value="Send") | |
# Project Explorer Tab | |
with gr.Tab("Project Explorer"): | |
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project") | |
explore_button = gr.Button(value="Explore") | |
project_output = gr.Textbox(label="File Tree", lines=20) | |
# Chat App Logic Tab | |
with gr.Tab("Chat App"): | |
history = gr.State([]) | |
examples = [ | |
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."], | |
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"], | |
["Generate a web page with a heading that says 'Welcome to My Website!'", "action: GENERATE_HTML action_input=a heading that says 'Welcome to My Website!'"], | |
] | |
def chat(purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history): | |
if agent_name == "WEB_DEV": | |
agent = WebDevAgent() | |
elif agent_name == "AI_SYSTEM_PROMPT": | |
agent = AiSystemPromptAgent() | |
elif agent_name == "PYTHON_CODE_DEV": | |
agent = PythonCodeDevAgent() | |
else: | |
agent = WebDevAgent() # Default to WEB_DEV if agent_name is invalid | |
history = list(run_agent(purpose, history, agent)) | |
return history, history | |
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history]) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |