MistriDevLab / app.py
acecalisto3's picture
Update app.py
8ffb558 verified
raw
history blame
19.8 kB
import os
import subprocess
import random
from typing import List, Dict, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
# --- Configuration ---
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Hugging Face model for text generation
MAX_HISTORY_TURNS = 5 # Number of previous turns to include in the prompt
MAX_TOKENS_PER_TURN = 2048 # Maximum number of tokens to generate per turn
VERBOSE_LOGGING = True # Enable verbose logging for debugging
DEFAULT_AGENT = "WEB_DEV" # Default agent to use
# --- Logging Setup ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agent Definitions ---
class Agent:
"""Base class for all agents."""
def __init__(self, name: str, description: str):
self.name = name
self.description = description
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles an action from the user.
Args:
action: The action name.
action_input: The input for the action.
history: The conversation history.
task: The current task.
Returns:
A tuple containing the next action name, action input, updated history, and updated task.
"""
raise NotImplementedError("Agent subclasses must implement handle_action.")
def get_prompt(self, message: str, history: List[Tuple[str, str]], task: str) -> str:
"""Generates a prompt for the language model.
Args:
message: The user's message.
history: The conversation history.
task: The current task.
Returns:
The prompt string.
"""
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
prompt = f"""
{date_time_str}
Agent: {self.name}
Task: {task}
History:
{self.format_history(history)}
Message: {message}
"""
return prompt
def format_history(self, history: List[Tuple[str, str]]) -> str:
"""Formats the conversation history for the prompt."""
formatted_history = ""
for user_message, agent_response in history[-MAX_HISTORY_TURNS:]:
formatted_history += f"[INST] {user_message} [/INST]\n{agent_response}\n"
return formatted_history
class WebDevAgent(Agent):
"""Agent for web development tasks."""
def __init__(self):
super().__init__(name="WEB_DEV", description="Agent specialized in web development tasks.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "SEARCH":
return self._handle_search_action(action_input, history, task)
elif action == "GENERATE_HTML":
return self._handle_generate_html_action(action_input, history, task)
elif action == "GENERATE_CSS":
return self._handle_generate_css_action(action_input, history, task)
elif action == "GENERATE_JS":
return self._handle_generate_js_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_search_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the SEARCH action."""
if VERBOSE_LOGGING:
logging.info(f"Calling SEARCH action with input: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input) # Use i_search for web search
history.append(("observation: search result is:", response))
else:
history.append(("observation: I need a valid URL for the SEARCH action.", ""))
except Exception as e:
history.append(("observation:", str(e)))
return "MAIN", None, history, task
def _handle_generate_html_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_HTML action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_HTML action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate HTML code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```html"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated HTML code:", response))
return "MAIN", None, history, task
def _handle_generate_css_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_CSS action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_CSS action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate CSS code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```css"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated CSS code:", response))
return "MAIN", None, history, task
def _handle_generate_js_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_JS action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_JS action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate JavaScript code for a web page that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```js"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated JavaScript code:", response))
return "MAIN", None, history, task
class AiSystemPromptAgent(Agent):
"""Agent for generating system prompts."""
def __init__(self):
super().__init__(name="AI_SYSTEM_PROMPT", description="Agent specialized in generating system prompts.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "GENERATE_PROMPT":
return self._handle_generate_prompt_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_generate_prompt_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_PROMPT action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_PROMPT action with input: {action_input}")
# Simulate OpenAI's prompt generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate a system prompt for a language model that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```json"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated system prompt:", response))
return "MAIN", None, history, task
class PythonCodeDevAgent(Agent):
"""Agent for Python code development tasks."""
def __init__(self):
super().__init__(name="PYTHON_CODE_DEV", description="Agent specialized in Python code development tasks.")
def handle_action(self, action: str, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
if action == "GENERATE_CODE":
return self._handle_generate_code_action(action_input, history, task)
elif action == "RUN_CODE":
return self._handle_run_code_action(action_input, history, task)
elif action == "COMPLETE":
return "COMPLETE", "COMPLETE", history, task
else:
return "MAIN", None, history, task
def _handle_generate_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the GENERATE_CODE action."""
if VERBOSE_LOGGING:
logging.info(f"Calling GENERATE_CODE action with input: {action_input}")
# Simulate OpenAI's code generation capabilities using Hugging Face
prompt = self.get_prompt(f"Generate Python code that {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: generated Python code:", response))
return "MAIN", None, history, task
def _handle_run_code_action(self, action_input: str, history: List[Tuple[str, str]], task: str) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the RUN_CODE action."""
if VERBOSE_LOGGING:
logging.info(f"Calling RUN_CODE action with input: {action_input}")
# Simulate OpenAI's code execution capabilities using Hugging Face
prompt = self.get_prompt(f"Run the following Python code and provide the output: {action_input}", history, task)
response = run_gpt(prompt, stop_tokens=["```", "```python"], max_tokens=MAX_TOKENS_PER_TURN)
history.append(("observation: code output:", response))
return "MAIN", None, history, task
# --- Action Handlers ---
def handle_main_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the MAIN action, which is the default action."""
if VERBOSE_LOGGING:
logging.info(f"Calling MAIN action with input: {action_input}")
prompt = agent.get_prompt(action_input, history, task)
response = run_gpt(prompt, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=MAX_TOKENS_PER_TURN)
if VERBOSE_LOGGING:
logging.info(f"Response from model: {response}")
history.append((action_input, response))
lines = response.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Action: {action_name} - {action_input}")
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history.append((line, ""))
if VERBOSE_LOGGING:
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def handle_update_task_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the UPDATE-TASK action, which updates the current task."""
if VERBOSE_LOGGING:
logging.info(f"Calling UPDATE-TASK action with input: {action_input}")
prompt = agent.get_prompt(action_input, history, task)
task = run_gpt(prompt, stop_tokens=[], max_tokens=64).strip("\n")
history.append(("observation: task has been updated to:", task))
return "MAIN", None, history, task
def handle_search_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the SEARCH action, which performs a web search."""
if VERBOSE_LOGGING:
logging.info(f"Calling SEARCH action with input: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input) # Use i_search for web search
history.append(("observation: search result is:", response))
else:
history.append(("observation: I need a valid URL for the SEARCH action.", ""))
except Exception as e:
history.append(("observation:", str(e)))
return "MAIN", None, history, task
def handle_complete_action(action: str, action_input: str, history: List[Tuple[str, str]], task: str, agent: Agent) -> Tuple[str, str, List[Tuple[str, str]], str]:
"""Handles the COMPLETE action, which ends the current task."""
if VERBOSE_LOGGING:
logging.info(f"Calling COMPLETE action.")
task = "END"
return "COMPLETE", "COMPLETE", history, task
# --- Action Mapping ---
ACTION_HANDLERS: Dict[str, callable] = {
"MAIN": handle_main_action,
"UPDATE-TASK": handle_update_task_action,
"SEARCH": handle_search_action,
"COMPLETE": handle_complete_action,
}
# --- Utility Functions ---
def run_gpt(prompt: str, stop_tokens: List[str], max_tokens: int) -> str:
"""Runs the language model and returns the generated text."""
if VERBOSE_LOGGING:
logging.info(f"Prompt: {prompt}")
client = InferenceClient(MODEL_NAME)
resp = client.text_generation(prompt, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
if VERBOSE_LOGGING:
logging.info(f"Response: {resp}")
return resp
def parse_action(line: str) -> Tuple[str, str]:
"""Parses an action line to get the action name and input."""
parts = line.split(":", 1)
if len(parts) == 2:
action_name = parts[0].replace("action", "").strip()
action_input = parts[1].strip()
else:
action_name = parts[0].replace("action", "").strip()
action_input = ""
return action_name, action_input
def run_agent(purpose: str, history: List[Tuple[str, str]], agent: Agent) -> List[Tuple[str, str]]:
"""Runs the agent and returns the updated conversation history."""
task = None
directory = "./"
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
if VERBOSE_LOGGING:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
if VERBOSE_LOGGING:
logging.info(f"Running action: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name = "COMPLETE"
task = "END"
return history
if action_name not in ACTION_HANDLERS:
action_name = "MAIN"
if action_name == "" or action_name is None:
action_name = "MAIN"
action_handler = ACTION_HANDLERS[action_name]
action_name, action_input, history, task = action_handler(action_name, action_input, history, task, agent)
yield history
if task == "END":
return history
except Exception as e:
history.append(("observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command", ""))
logging.error(f"Error in run_agent: {e}")
return history
# --- Gradio Interface ---
def main():
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: Your No-Code Development Powerhouse")
gr.Markdown("### Agents w/ Agents: Mastering No-Code Development")
# Chat Interface
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
# Input Components
message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?")
agent_name = gr.Dropdown(label="Agents", choices=[agent.name for agent in [WebDevAgent(), AiSystemPromptAgent(), PythonCodeDevAgent()]], value=DEFAULT_AGENT, interactive=True)
sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True)
temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs")
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
# Button to submit the message
submit_button = gr.Button(value="Send")
# Project Explorer Tab
with gr.Tab("Project Explorer"):
project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project")
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
# Chat App Logic Tab
with gr.Tab("Chat App"):
history = gr.State([])
examples = [
["What is the purpose of this AI agent?", "I am designed to assist with no-code development tasks."],
["Can you help me generate a Python function to calculate the factorial of a number?", "Sure! Here is a Python function to calculate the factorial of a number:"],
["Generate a web page with a heading that says 'Welcome to My Website!'", "action: GENERATE_HTML action_input=a heading that says 'Welcome to My Website!'"],
]
def chat(purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history):
if agent_name == "WEB_DEV":
agent = WebDevAgent()
elif agent_name == "AI_SYSTEM_PROMPT":
agent = AiSystemPromptAgent()
elif agent_name == "PYTHON_CODE_DEV":
agent = PythonCodeDevAgent()
else:
agent = WebDevAgent() # Default to WEB_DEV if agent_name is invalid
history = list(run_agent(purpose, history, agent))
return history, history
submit_button.click(chat, inputs=[purpose, message, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, history], outputs=[chatbot, history])
demo.launch()
if __name__ == "__main__":
main()