MistriDevLab / app.py
acecalisto3's picture
Update app.py
b5a44cc verified
raw
history blame
10.6 kB
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from datetime import datetime
import logging
import json
import nltk
from transformers import pipeline
# Ensure NLTK data is downloaded
nltk.download('punkt')
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
# --- Set up logging ---
logging.basicConfig(
filename="app.log", # Name of the log file
level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.)
format="%(asctime)s - %(levelname)s - %(message)s",
)
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
VERBOSE = True
MAX_HISTORY = 5
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History:
{history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is:
{history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is:
{history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are:
{test_results}
What do you want to know about the test results?
thought:
"""
def format_prompt(message, history, max_history_turns=5):
prompt = "<s>"
# Keep only the last 'max_history_turns' turns
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
logging.info(f"Seed: {seed}") # Log the seed
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content)) # Log the prompt
resp = client.text_generation(content, max_new_tokens=max_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response
return resp
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
):
seed = random.randint(1,1111111111111111)
if agent_name == "WEB_DEV":
agent = "You are a helpful AI assistant. You are a web developer."
elif agent_name == "AI_SYSTEM_PROMPT":
agent = "You are a helpful AI assistant. You are an AI system."
elif agent_name == "PYTHON_CODE_DEV":
agent = "You are a helpful AI assistant. You are a Python code developer."
else:
agent = "You are a helpful AI assistant."
system_prompt = agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
formatted_prompt = f"{system_prompt} {prompt}"
formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history
logging.info(f"Formatted Prompt: {formatted_prompt}")
stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp)) # Log the response
return resp
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
logging.info(f"CALLING SEARCH: {action_input}")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
logging.info(f"Search Result: {response}")
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
logging.info(f"CALLING MAIN: {action_input}")
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=32000,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
logging.info(f"Thought: {line}")
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
logging.info(f"Action: {action_name} - {action_input}")
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
logging.info(f"Other Output: {line}")
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
logging.info(f"CALLING SET_TASK: {action_input}")
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
logging.info(f"CALLING END_FN: {action_input}")
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name="COMPLETE"
task="END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
logging.info("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name="MAIN"
if action_name == "" or action_name == None:
action_name="MAIN"
assert action_name in NAME_TO_FUNC
logging.info(f"RUN: {action_name} - {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
logging.error(f"Error in run_action: {e}")
return "MAIN", None, history, task
def run(purpose, history):
task = None
directory = "./"
if history:
history = str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
logging.info(f"---")
logging.info(f"Purpose: {purpose}")
logging.info(f"Task: {task}")
logging.info(f"---")
logging.info(f"History: {history}")
logging.info(f"---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
if task == "END":
return (history)
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
"""Generates text in chunks to avoid token limit errors."""
sentences = nltk.sent_tokenize(input_text)
generated_text = []
generator = pipeline('text-generation', model=model)
for sentence in sentences:
# Tokenize the sentence and check if it's within the limit
tokens = generator.tokenizer(sentence).input_ids
if len(tokens) + max_tokens_to_generate <= 32768:
# Generate text for this chunk
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
generated_text.append(response[0]['generated_text'])
else:
# Handle cases where the sentence is too long
print(f"Sentence too long: {sentence}")
return ''.join(generated_text)
# Gradio Interface
def gradio_interface(purpose, history):
try:
history = json.loads(history) if history else []
except json.JSONDecodeError:
history = []
result = run(purpose, history)
return next(result)
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Enter the purpose here..."),
gr.Textbox(lines=10, placeholder="Enter the history here (JSON format)...")
],
outputs="text",
title="AI Assistant",
description="An AI assistant that helps with various tasks."
)
if __name__ == "__main__":
iface.launch()