SouthSpencerQA / app.py
acecalisto3's picture
Update app.py
a4e9047 verified
import gradio as gr
import logging
import requests
import time
from bs4 import BeautifulSoup
from datetime import datetime
from typing import List, Optional, Tuple
from urllib.parse import urljoin, urlparse
import random
import nltk
from nltk.tokenize import sent_tokenize
import PyPDF2
import io
from joblib import dump, load
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from icalendar import Calendar
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from fake_useragent import UserAgent
from concurrent.futures import ThreadPoolExecutor
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# Download NLTK data
try:
nltk.download('punkt', quiet=True)
except Exception as e:
logger.warning(f"Failed to download NLTK data: {e}")
class Config:
MODEL_NAME = "microsoft/DialoGPT-medium"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MAX_TOKENS = 1000
REQUEST_TIMEOUT = 10
MAX_DEPTH = 1
SIMILARITY_THRESHOLD = 0.5
CHUNK_SIZE = 512
MAX_WORKERS = 5
INDEXED_URLS = {
"https://drive.google.com/file/d/1d5kkqaQkdiA2SwJ0JFrTuKO9zauiUtFz/view?usp=sharing"
}
class ResourceItem:
def __init__(self, url: str, content: str, resource_type: str):
self.url = url
self.content = content
self.type = resource_type
self.embedding = None
self.chunks = []
self.chunk_embeddings = []
def __str__(self):
return f"ResourceItem(type={self.type}, url={self.url}, content_length={len(self.content)})"
def create_chunks(self, chunk_size=Config.CHUNK_SIZE):
"""Split content into overlapping chunks for better context preservation"""
words = self.content.split()
overlap = chunk_size // 4 # 25% overlap
for i in range(0, len(words), chunk_size - overlap):
chunk = ' '.join(words[i:i + chunk_size])
if chunk:
self.chunks.append(chunk)
class RobustCrawler:
def __init__(self, max_retries=3, backoff_factor=0.3):
self.ua = UserAgent()
self.session = self._create_robust_session(max_retries, backoff_factor)
def _create_robust_session(self, max_retries, backoff_factor):
session = requests.Session()
retry_strategy = Retry(
total=max_retries,
status_forcelist=[429, 500, 502, 503, 504],
method_whitelist=["HEAD", "GET", "OPTIONS"],
backoff_factor=backoff_factor,
raise_on_status=False
)
adapter = HTTPAdapter(max_retries=retry_strategy)
session.mount("https://", adapter)
session.mount("http://", adapter)
return session
def get_headers(self):
return {
"User-Agent": self.ua.random,
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://www.google.com/",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1"
}
def crawl_with_exponential_backoff(self, url, timeout=Config.REQUEST_TIMEOUT):
try:
time.sleep(random.uniform(0.5, 2.0))
response = self.session.get(
url,
headers=self.get_headers(),
timeout=timeout
)
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
logger.error(f"Crawling error for {url}: {e}")
return None
class SchoolChatbot:
def __init__(self):
logger.info("Initializing SchoolChatbot...")
self.setup_models()
self.resources = []
self.visited_urls = set()
self.crawl_and_index_resources()
def setup_models(self):
try:
logger.info("Setting up models...")
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
logger.info("Models setup completed successfully.")
except Exception as e:
logger.error(f"Failed to setup models: {e}")
raise RuntimeError("Failed to initialize required models")
def crawl_and_index_resources(self):
logger.info("Starting to crawl and index resources...")
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor:
futures = [executor.submit(self.crawl_url, url, 0) for url in Config.INDEXED_URLS]
for future in futures:
try:
future.result()
except Exception as e:
logger.error(f"Error in crawling thread: {e}")
logger.info(f"Crawling completed. Indexed {len(self.resources)} resources.")
def crawl_url(self, url, depth):
if depth > Config.MAX_DEPTH or url in self.visited_urls:
return
self.visited_urls.add(url)
crawler = RobustCrawler()
response = crawler.crawl_with_exponential_backoff(url)
if not response:
logger.error(f"Failed to retrieve content from {url}. Please check the URL and permissions.")
return
content_type = response.headers.get("Content-Type", "").lower()
try:
if "text/calendar" in content_type or url.endswith(".ics"):
self.extract_ics_content(url, response.text)
elif "text/html" in content_type:
self.extract_html_content(url, response)
elif "application/pdf" in content_type:
self.extract_pdf_content(url, response.content)
else:
logger.warning(f"Unknown content type for {url}: {content_type}")
self.store_resource(url, response.text, 'unknown')
except Exception as e:
logger.error(f"Error processing {url}: {e}")
def extract_ics_content(self, url, ics_text):
try:
cal = Calendar.from_ical(ics_text)
events = []
for component in cal.walk():
if component.name == "VEVENT":
event = self._format_calendar_event(component)
if event:
events.append(event)
if events:
self.store_resource(url, "\n".join(events), 'calendar')
except Exception as e:
logger.error(f"Error parsing ICS from {url}: {e}")
def _format_calendar_event(self, event):
try:
summary = event.get("SUMMARY", "No Summary")
start = event.get("DTSTART", "").dt
end = event.get("DTEND", "").dt
description = event.get("DESCRIPTION", "")
location = event.get("LOCATION", "")
event_details = [f"Event: {summary}"]
if start:
event_details.append(f"Start: {start}")
if end:
event_details.append(f"End: {end}")
if location:
event_details.append(f"Location: {location}")
if description:
event_details.append(f"Description: {description}")
return " | ".join(event_details)
except Exception:
return None
def extract_html_content(self, url, response):
try:
soup = BeautifulSoup(response.content, 'html.parser')
# Remove unwanted elements
for element in soup.find_all(['script', 'style', 'nav', 'footer']):
element.decompose()
content_sections = []
# Extract main content
main_content = soup.find(['main', 'article', 'div'], class_=['content', 'main-content'])
if main_content:
content_sections.append(main_content.get_text(strip=True, separator=' '))
# Extract headings and their associated content
for heading in soup.find_all(['h1', 'h2', 'h3']):
section = [heading.get_text(strip=True)]
next_elem = heading.find_next_sibling()
while next_elem and next_elem.name in ['p', 'ul', 'ol', 'div']:
section.append(next_elem.get_text(strip=True))
next_elem = next_elem.find_next_sibling()
content_sections.append(' '.join(section))
if content_sections:
self.store_resource(url, ' '.join(content_sections), 'webpage')
# Process links if within depth limit
if len(self.visited_urls) < Config.MAX_DEPTH:
self._process_links(soup, url)
except Exception as e:
logger.error(f"Error extracting HTML content from {url}: {e}")
def _process_links(self, soup, base_url):
try:
for link in soup.find_all('a', href=True):
full_url = urljoin(base_url, link['href'])
if self.is_valid_url(full_url) and full_url not in self.visited_urls:
time.sleep(random.uniform(0.5, 2.0))
self.crawl_url(full_url, len(self.visited_urls))
except Exception as e:
logger.error(f"Error processing links from {base_url}: {e}")
def extract_pdf_content(self, url, pdf_content):
try:
pdf_file = io.BytesIO(pdf_content)
pdf_reader = PyPDF2.PdfReader(pdf_file)
text_content = []
for page in pdf_reader.pages:
try:
text_content.append(page.extract_text())
except Exception as e:
logger.error(f"Error extracting text from PDF page: {e}")
continue
if text_content:
self.store_resource(url, ' '.join(text_content), 'pdf')
except Exception as e:
logger.error(f"Error extracting PDF content from {url}: {e}")
def store_resource(self, url, text_data, resource_type):
try:
# Create resource item and split into chunks
item = ResourceItem(url, text_data, resource_type)
item.create_chunks()
# Generate embeddings for chunks
item.chunk_embeddings = [
self.embedding_model.encode(chunk)
for chunk in item.chunks
]
# Calculate average embedding
if item.chunk_embeddings:
item.embedding = np.mean(item.chunk_embeddings, axis=0)
self.resources.append(item)
logger.debug(f"Stored resource: {url} (type={resource_type})")
except Exception as e:
logger.error(f"Error storing resource {url}: {e}")
def is_valid_url(self, url):
try:
parsed = urlparse(url)
return bool(parsed.scheme) and bool(parsed.netloc)
except Exception:
return False
def find_best_matching_chunks(self, query, n_chunks=3):
if not self.resources:
return []
try:
query_embedding = self.embedding_model.encode(query)
all_chunks = []
for resource in self.resources:
for chunk, embedding in zip(resource.chunks, resource.chunk_embeddings):
score = cosine_similarity([query_embedding], [embedding])[0][0]
if score > Config.SIMILARITY_THRESHOLD:
all_chunks.append((chunk, score, resource.url))
# Sort by similarity score and get top n chunks
all_chunks.sort(key=lambda x: x[1], reverse=True)
return all_chunks[:n_chunks]
except Exception as e:
logger.error(f"Error finding matching chunks: {e}")
return []
def generate_response(self, user_input):
try:
# Find best matching chunks
best_chunks = self.find_best_matching_chunks(user_input)
if not best_chunks:
return "I apologize, but I couldn't find any relevant information in my knowledge base. Could you please rephrase your question or ask about something else?"
# Prepare context from best matching chunks
context = "\n".join([chunk[0] for chunk in best_chunks])
# Prepare conversation history
conversation = f"Context: {context}\nUser: {user_input}\nAssistant:"
# Generate response
input_ids = self.tokenizer.encode(conversation, return_tensors='pt')
response_ids = self.model.generate(
input_ids,
max_length=Config.MAX_TOKENS,
pad_token_id=self.tokenizer.eos_token_id,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = self.tokenizer.decode(
response_ids[:, input_ids.shape[-1]:][0],
skip_special_tokens=True
)
# Format response with source
source_urls = list(set(chunk[2] for chunk in best_chunks))
sources = "\n\nSources:\n" + "\n".join(source_urls)
return response + sources
except Exception as e:
logger.error(f"Error generating response: {e}")
return "I apologize, but I encountered an error while processing your question. Please try again."
def create_gradio_interface(chatbot):
def respond(user_input):
return chatbot.generate_response(user_input)
interface = gr.Interface(
fn=respond,
inputs=gr.Textbox(
label="Ask a Question",
placeholder="Type your question here...",
lines=2
),
outputs=gr.Textbox(
label="Answer",
placeholder="Response will appear here...",
lines=5
),
title="School Information Chatbot",
description="Ask about school events, policies, or other information. The chatbot will provide answers based on available school documents and resources.",
examples=[
["What events are happening this week?"],
["When is the next board meeting?"],
["What is the school's attendance policy?"]
],
theme=gr.themes.Soft(),
flagging_mode="never"
)
return interface
if __name__ == "__main__":
try:
chatbot = SchoolChatbot()
interface = create_gradio_interface(chatbot)
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)
except Exception as e:
logger.error(f"Failed to start application: {e}")