SouthSpencerQA / app.py
acecalisto3's picture
Update app.py
686de7f verified
import gradio as gr
import logging
import time
from datetime import datetime
from typing import List, Optional, Tuple
import random
import nltk
# nltk.download('punkt') # Ensure punkt is downloaded if needed
from nltk.tokenize import sent_tokenize
import io
# from joblib import dump, load # Not used currently, commented out
# Import Hugging Face libraries
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from datasets import load_dataset # Added for dataset loading
# Import ML/Data libraries
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Standard libraries
from concurrent.futures import ThreadPoolExecutor # Still useful for embedding generation
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__) # Use __name__ for logger
# Download NLTK data (optional, might not be strictly needed depending on chunking)
# try:
# nltk.download('punkt', quiet=True)
# except Exception as e:
# logger.warning(f"Failed to download NLTK data: {e}")
# --- Configuration ---
class Config:
MODEL_NAME = "microsoft/DialoGPT-medium"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MAX_TOKENS_RESPONSE = 150 # Max tokens for the generated response part
MAX_TOKENS_INPUT = 800 # Max tokens allowed for context + query (adjust based on model limits)
SIMILARITY_THRESHOLD = 0.3 # Adjusted threshold, tune as needed
CHUNK_SIZE = 300 # Smaller chunk size might be better for dataset entries
MAX_WORKERS = 5 # For parallel embedding generation
DATASET_NAME = "acecalisto3/sspnc" # Hugging Face Dataset ID
DATASET_SPLIT = "train" # Which split of the dataset to use
TEXT_COLUMNS = ["Subject", "Body"] # Columns containing text to index
SOURCE_INFO_COLUMNS = ["Subject", "Date"] # Columns to use for source attribution
# --- Data Structures ---
class ResourceItem:
def __init__(self, source_id: str, content: str, resource_type: str):
self.source_id = source_id # Changed 'url' to 'source_id' for clarity
self.content = content
self.type = resource_type
self.embedding = None # Overall embedding (optional now, as we use chunk embeddings)
self.chunks = []
self.chunk_embeddings = []
def __str__(self):
return f"ResourceItem(type={self.type}, source_id={self.source_id}, content_length={len(self.content)})"
def create_chunks(self, chunk_size=Config.CHUNK_SIZE):
"""Split content into overlapping chunks using sentence tokenization for better boundaries"""
if not self.content:
logger.warning(f"Content is empty for source_id: {self.source_id}. Skipping chunk creation.")
return
try:
sentences = sent_tokenize(self.content)
except LookupError:
logger.warning("NLTK 'punkt' tokenizer not found. Falling back to simple whitespace splitting. Consider running nltk.download('punkt')")
# Fallback to word splitting if sentence tokenization fails
words = self.content.split()
overlap = chunk_size // 4
for i in range(0, len(words), chunk_size - overlap):
chunk = ' '.join(words[i : i + chunk_size])
if chunk:
self.chunks.append(chunk)
return
except Exception as e:
logger.error(f"Error during sentence tokenization for {self.source_id}: {e}. Skipping chunk creation.")
return
current_chunk = ""
overlap_sentences = max(1, chunk_size // 100) # Overlap a few sentences
last_sentences = []
for sentence in sentences:
# If adding the next sentence exceeds chunk size (considering words approx)
if len((current_chunk + " " + sentence).split()) > chunk_size:
if current_chunk: # Add the completed chunk
self.chunks.append(current_chunk.strip())
# Start new chunk with overlap
current_chunk = " ".join(last_sentences) + " " + sentence
else:
current_chunk += " " + sentence
# Keep track of last sentences for overlap
last_sentences.append(sentence)
if len(last_sentences) > overlap_sentences:
last_sentences.pop(0)
# Add the last remaining chunk
if current_chunk.strip():
self.chunks.append(current_chunk.strip())
if not self.chunks:
logger.warning(f"No chunks created for source_id: {self.source_id}. Content might be too short or tokenization failed.")
# --- Chatbot Core Logic ---
class SchoolChatbot:
def __init__(self):
logger.info("Initializing SchoolChatbot...")
self.setup_models()
self.resources: List[ResourceItem] = []
self.load_and_index_dataset() # Changed from crawl_and_index_resources
def setup_models(self):
try:
logger.info("Setting up models...")
# Consider adding device mapping if GPU is available: device_map="auto"
self.tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
self.model = AutoModelForCausalLM.from_pretrained(Config.MODEL_NAME)
self.embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
# Ensure tokenizer has a padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model.config.pad_token_id = self.model.config.eos_token_id
logger.info("Models setup completed successfully.")
except Exception as e:
logger.error(f"Failed to setup models: {e}")
raise RuntimeError("Failed to initialize required models") from e
def load_and_index_dataset(self):
logger.info(f"Loading dataset: {Config.DATASET_NAME}, split: {Config.DATASET_SPLIT}")
try:
# Load the dataset
dataset = load_dataset(Config.DATASET_NAME, split=Config.DATASET_SPLIT)
logger.info(f"Dataset loaded successfully. Number of rows: {len(dataset)}")
# Process dataset rows in parallel (for embedding generation)
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor:
futures = []
for i, row in enumerate(dataset):
# Combine text from specified columns
text_content = " ".join([str(row[col]) for col in Config.TEXT_COLUMNS if row.get(col)])
text_content = text_content.strip() # Remove leading/trailing whitespace
# Create a source identifier
source_parts = [f"{col}: {row[col]}" for col in Config.SOURCE_INFO_COLUMNS if row.get(col)]
source_id = f"Dataset Entry {i} ({'; '.join(source_parts)})" # More informative ID
if not text_content:
logger.warning(f"Row {i} has no content in specified columns. Skipping.")
continue
# Submit the processing task
futures.append(executor.submit(self.process_and_store_resource, source_id, text_content, 'dataset_entry'))
# Wait for all futures to complete and collect results
for future in futures:
try:
result_item = future.result()
if result_item:
self.resources.append(result_item)
except Exception as e:
logger.error(f"Error processing dataset entry in thread: {e}")
logger.info(f"Dataset processing completed. Indexed {len(self.resources)} resources.")
except Exception as e:
logger.error(f"Failed to load or process dataset {Config.DATASET_NAME}: {e}")
# Decide if the app should continue without data or raise an error
# raise RuntimeError("Failed to load data") from e # Option: halt if data fails
def process_and_store_resource(self, source_id: str, text_data: str, resource_type: str) -> Optional[ResourceItem]:
"""Creates ResourceItem, chunks, and generates embeddings for a single data entry."""
try:
# Create resource item and split into chunks
item = ResourceItem(source_id, text_data, resource_type)
item.create_chunks()
if not item.chunks:
logger.warning(f"No chunks generated for {source_id}. Skipping storage.")
return None
# Generate embeddings for chunks (can be slow, hence the thread pool)
chunk_embeddings_list = self.embedding_model.encode(item.chunks, show_progress_bar=False) # Batch encode
item.chunk_embeddings = chunk_embeddings_list
# Calculate average embedding (optional, might not be needed if only using chunk search)
# if item.chunk_embeddings:
# item.embedding = np.mean(item.chunk_embeddings, axis=0)
logger.debug(f"Processed resource: {source_id} (type={resource_type}), {len(item.chunks)} chunks.")
return item # Return the processed item
except Exception as e:
logger.error(f"Error processing/storing resource {source_id}: {e}")
return None # Return None on error
# store_resource is now process_and_store_resource and called within the thread pool
def find_best_matching_chunks(self, query: str, n_chunks: int = 3) -> List[Tuple[str, float, str]]:
"""Finds the most relevant text chunks based on semantic similarity."""
if not self.resources:
logger.warning("No resources loaded or indexed. Cannot find matches.")
return []
try:
query_embedding = self.embedding_model.encode(query)
all_chunks_with_scores = []
for resource in self.resources:
if not resource.chunks or not resource.chunk_embeddings:
continue # Skip resources with no chunks/embeddings
# Calculate similarity between query and all chunks of the current resource
similarities = cosine_similarity([query_embedding], resource.chunk_embeddings)[0]
for chunk, score in zip(resource.chunks, similarities):
if score > Config.SIMILARITY_THRESHOLD:
all_chunks_with_scores.append((chunk, float(score), resource.source_id)) # Use source_id
# Sort by similarity score (descending) and return top n
all_chunks_with_scores.sort(key=lambda x: x[1], reverse=True)
return all_chunks_with_scores[:n_chunks]
except Exception as e:
logger.error(f"Error finding matching chunks: {e}")
return []
def generate_response(self, user_input: str) -> str:
"""Generates a response based on user input and retrieved context."""
try:
# 1. Find relevant context chunks
best_chunks = self.find_best_matching_chunks(user_input)
if not best_chunks:
logger.info(f"No relevant chunks found for query: '{user_input}'")
return "I couldn't find specific information related to your question in the provided documents. Could you please rephrase or ask about a different topic?"
# 2. Prepare context and source attribution
context = "\n".join([chunk[0] for chunk in best_chunks])
# Use source_id from the chunk tuple (index 2)
source_ids = sorted(list(set(chunk[2] for chunk in best_chunks)))
sources_text = "\n\nSources:\n" + "\n".join([f"- {sid}" for sid in source_ids])
# 3. Prepare input for the language model
# Ensure the input doesn't exceed model limits
prompt_template = f"Based on the following information:\n{context}\n\nAnswer the question: {user_input}\nAnswer:"
# prompt_template = f"Context: {context}\nUser: {user_input}\nAssistant:" # Alternative simpler prompt
# 4. Tokenize and truncate if necessary
input_ids = self.tokenizer.encode(prompt_template, return_tensors='pt', max_length=Config.MAX_TOKENS_INPUT, truncation=True)
# 5. Generate response using the language model
logger.info("Generating response with LLM...")
output_sequences = self.model.generate(
input_ids=input_ids,
max_new_tokens=Config.MAX_TOKENS_RESPONSE, # Control length of *new* tokens
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_return_sequences=1 # Generate one response
)
# Decode the generated part of the response
# response_text = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# Decode only the newly generated tokens, excluding the prompt
response_text = self.tokenizer.decode(output_sequences[0][input_ids.shape[-1]:], skip_special_tokens=True)
# Basic post-processing (optional)
response_text = response_text.strip()
# Remove potential repetition of the question if the model includes it
if user_input.lower() in response_text.lower()[:len(user_input)+10]:
response_text = response_text.split(user_input, 1)[-1].strip("? ")
logger.info(f"Generated response (before sources): {response_text}")
# 6. Combine response and sources
full_response = response_text + sources_text
return full_response
except Exception as e:
logger.exception(f"Error generating response: {e}") # Use logger.exception to include stack trace
return "I apologize, but I encountered an error while processing your question. Please check the logs or try again later."
# --- Gradio Interface ---
def create_gradio_interface(chatbot: SchoolChatbot):
"""Creates and returns the Gradio web interface."""
def respond(user_input: str) -> str:
if not user_input:
return "Please enter a question."
# Add basic input sanitization if needed
return chatbot.generate_response(user_input)
interface = gr.Interface(
fn=respond,
inputs=gr.Textbox(
label="Ask a Question",
placeholder="Type your question about the school information...",
lines=3, # Increased lines slightly
),
outputs=gr.Textbox(
label="Answer",
placeholder="Response will appear here...",
lines=10, # Increased lines for longer answers + sources
),
title="School Information Chatbot (Dataset Powered)",
description="Ask about information contained in the school dataset. The chatbot uses AI to find relevant details and generate answers.",
examples=[ # Update examples based on dataset content
["What are the main subjects covered in the documents?"],
["Are there any mentions of specific events or dates?"],
["Summarize the key points about [topic from dataset]."]
],
theme=gr.themes.Soft(),
allow_flagging="never", # Changed from flagging_mode
# Optional: Add feedback capabilities
# feedback=["thumbs", "textbox"],
)
return interface
# --- Main Execution ---
if __name__ == "__main__":
# Install necessary libraries if running for the first time
# pip install gradio transformers sentence-transformers torch datasets scikit-learn nltk numpy beautifulsoup4 requests PyPDF2 icalendar fake-useragent joblib # Ensure all are installed
print("Starting application...")
try:
# 1. Initialize the chatbot (loads models and data)
school_chatbot = SchoolChatbot()
# 2. Create the Gradio interface
app_interface = create_gradio_interface(school_chatbot)
# 3. Launch the interface
print("Launching Gradio Interface...")
app_interface.launch(
server_name="0.0.0.0", # Accessible on the local network
server_port=7860,
share=False, # Set to True to get a public link (use with caution)
debug=False # Set to True for more detailed Gradio logs (can be verbose)
)
print("Interface launched. Access it at http://localhost:7860 (or the relevant IP)")
except ImportError as ie:
logger.error(f"ImportError: {ie}. Make sure all required libraries are installed.")
print(f"ImportError: {ie}. Please install the missing library (e.g., pip install {ie.name}).")
except Exception as e:
logger.critical(f"Failed to start the application: {e}", exc_info=True) # Log critical error with stack trace
print(f"Critical error during startup: {e}")