Spaces:
Runtime error
Runtime error
# Manages user & assistant messages in the session state. | |
### 1. Import the libraries | |
import streamlit as st | |
import time | |
import os | |
from dataclasses import dataclass | |
from dotenv import load_dotenv | |
# https://api.python.langchain.com/en/latest/llms/langchain_community.llms.cohere.Cohere.html#langchain_community.llms.cohere.Cohere | |
from langchain_community.llms import Cohere | |
### 2. Setup datastructure for holding the messages | |
# Define a Message class for holding the query/response | |
class Message: | |
role: str # identifies the actor (system, user or human, assistant or ai) | |
payload: str # instructions, query, response | |
# Streamlit knows about the common roles as a result, it is able to display the icons | |
USER = "user" # or human, | |
ASSISTANT = "assistant" # or ai, | |
SYSTEM = "system" | |
# This is to simplify local development | |
# Without this you will need to copy/paste the API key with every change | |
try: | |
# CHANGE the location of the file | |
load_dotenv('C:\\Users\\raj\\.jupyter\\.env') | |
# Add the API key to the session - use it for populating the interface | |
if os.getenv('COHERE_API_KEY'): | |
st.session_state['COHERE_API_KEY'] = os.getenv('COHERE_API_KEY') | |
except: | |
print("Environment file not found !! Copy & paste your Cohere API key.") | |
### 3. Initialize the datastructure to hold the context | |
MESSAGES='messages' | |
if MESSAGES not in st.session_state: | |
system_message = Message(role=SYSTEM, payload='you are a polite assistant named "Ruby".') | |
st.session_state[MESSAGES] = [system_message] | |
### 4. Setup the title & input text element for the Cohere API key | |
# Set the title | |
# Populate API key from session if it is available | |
st.title("Multi-Turn conversation interface !!!") | |
# If the key is already available, initialize its value on the UI | |
if 'COHERE_API_KEY' in st.session_state: | |
cohere_api_key = st.sidebar.text_input('Cohere API key',value=st.session_state['COHERE_API_KEY']) | |
else: | |
cohere_api_key = st.sidebar.text_input('Cohere API key',placeholder='copy & paste your API key') | |
### 5. Define utility functions to invoke the LLM | |
# Create an instance of the LLM | |
def get_llm(): | |
return Cohere(model="command", cohere_api_key=cohere_api_key) | |
# Create the context by concatenating the messages | |
def get_chat_context(): | |
context = '' | |
for msg in st.session_state[MESSAGES]: | |
context = context + '\n\n' + msg.role + ':' + msg.payload | |
return context | |
# Generate the response and return | |
def get_llm_response(prompt): | |
llm = get_llm() | |
# Show spinner, while we are waiting for the response | |
with st.spinner('Invoking LLM ... '): | |
# get the context | |
chat_context = get_chat_context() | |
# Prefix the query with context | |
query_payload = chat_context +'\n\n Question: ' + prompt | |
response = llm.invoke(query_payload) | |
return response | |
### 6. Write the messages to chat_message container | |
# Write messages to the chat_message element | |
# This is needed as streamlit re-runs the entire script when user provides input in a widget | |
# https://docs.streamlit.io/develop/api-reference/chat/st.chat_message | |
for msg in st.session_state[MESSAGES]: | |
st.chat_message(msg.role).write(msg.payload) | |
### 7. Create the *chat_input* element to get the user query | |
# Interface for user input | |
prompt = st.chat_input(placeholder='Your input here') | |
### 8. Process the query received from user | |
if prompt: | |
# create user message and add to end of messages in the session | |
user_message = Message(role=USER, payload=prompt) | |
st.session_state[MESSAGES].append(user_message) | |
# Write the user prompt as chat message | |
st.chat_message(USER).write(prompt) | |
# Invoke the LLM | |
response = get_llm_response(prompt) | |
# Create message object representing the response | |
assistant_message = Message(role=ASSISTANT, payload=response) | |
# Add the response message to the mesages array in the session | |
st.session_state[MESSAGES].append(assistant_message) | |
# Write the response as chat_message | |
st.chat_message(ASSISTANT).write(response) | |
### 9. Write out the current content of the context | |
st.divider() | |
st.subheader('st.session_state[MESSAGES] dump:') | |
# Print the state of the buffer | |
for msg in st.session_state[MESSAGES]: | |
st.text(msg.role + ' : ' + msg.payload) | |