Spaces:
Sleeping
Sleeping
File size: 16,711 Bytes
8ceccef 0ceb721 1663f39 0ceb721 1663f39 8ceccef 0ceb721 1663f39 0ceb721 1663f39 53c3925 1663f39 0ceb721 1663f39 4567d2b 1663f39 4567d2b 53c3925 1663f39 4567d2b 1663f39 4567d2b 8ceccef 0ceb721 53c3925 8ceccef 0ceb721 53c3925 0ceb721 4567d2b 0ceb721 53c3925 1663f39 0ceb721 8ceccef 53c3925 1663f39 8ceccef 0ceb721 1663f39 53c3925 1663f39 8ceccef 0ceb721 73cd2cf 0ceb721 73cd2cf 080e344 1663f39 080e344 0ceb721 080e344 1663f39 0ceb721 1663f39 0ceb721 1663f39 0ceb721 080e344 0ceb721 8ceccef 0ceb721 1663f39 0ceb721 8ceccef 0ceb721 1663f39 080e344 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 8ceccef 0ceb721 8ceccef 0ceb721 8ceccef 0ceb721 8ceccef 0ceb721 8ceccef 0ceb721 cb18290 0ceb721 1663f39 0ceb721 fe4182f cb18290 0ceb721 fe4182f cb18290 0ceb721 1663f39 0ceb721 73cd2cf 080e344 73cd2cf 8ceccef 370ef8f 0ceb721 1663f39 0ceb721 1663f39 0ceb721 1663f39 cb18290 0ceb721 cb18290 0ceb721 cb18290 0ceb721 ec64bb9 0ceb721 8ceccef 0ceb721 1663f39 ec64bb9 0ceb721 1663f39 0ceb721 8ceccef 0ceb721 45b1b2a 0ceb721 1663f39 0ceb721 370ef8f 8ceccef 0ceb721 8ceccef 0ceb721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os
import numpy as np
import gymnasium as gym
from tqdm import tqdm
import argparse
from gymnasium.envs.toy_text.frozen_lake import generate_random_map
import wandb
class MonteCarloAgent:
def __init__(
self,
env_name="CliffWalking-v0",
gamma=0.99,
epsilon=0.1,
run_name=None,
**kwargs,
):
print("=" * 80)
print(f"# MonteCarloAgent - {env_name}")
print(f"- epsilon: {epsilon}")
print(f"- gamma: {gamma}")
print(f"- run_name: {run_name}")
self.run_name = run_name
self.env_name = env_name
self.epsilon, self.gamma = epsilon, gamma
self.env_kwargs = kwargs
if self.env_name == "FrozenLake-v1":
self.env_kwargs["desc"] = [
"SFFFFFFF",
"FFFFFFFH",
"FFFHFFFF",
"FFFFFHFF",
"FFFHFFFF",
"FHHFFFHF",
"FHFFHFHF",
"FFFHFFFG",
]
# self.env_kwargs["map_name"] = "8x8"
self.env_kwargs["is_slippery"] = False
self.env = gym.make(self.env_name, **self.env_kwargs)
self.n_states, self.n_actions = (
self.env.observation_space.n,
self.env.action_space.n,
)
print(f"- n_states: {self.n_states}")
print(f"- n_actions: {self.n_actions}")
self.reset()
def reset(self):
print("Resetting all state variables...")
self.Q = np.zeros((self.n_states, self.n_actions))
self.R = [[[] for _ in range(self.n_actions)] for _ in range(self.n_states)]
# An arbitrary e-greedy policy
self.Pi = np.full(
(self.n_states, self.n_actions), self.epsilon / self.n_actions
)
self.Pi[
np.arange(self.n_states),
np.random.randint(self.n_actions, size=self.n_states),
] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
print("=" * 80)
print("Initial policy:")
print(self.Pi)
print("=" * 80)
def choose_action(self, state, epsilon_override=None, greedy=False, **kwargs):
# Sample an action from the policy.
# The override_epsilon argument allows forcing the use of a possibly new self.epsilon value than the one used during training.
# The ability to override was mostly added for testing purposes and for the demo.
greedy_action = np.argmax(self.Pi[state])
if greedy or epsilon_override == 0:
return greedy_action
if epsilon_override is None:
return np.random.choice(self.n_actions, p=self.Pi[state])
return np.random.choice(
[greedy_action, np.random.randint(self.n_actions)],
p=[1 - epsilon_override, epsilon_override],
)
def generate_episode(self, max_steps=500, render=False, **kwargs):
state, _ = self.env.reset()
episode_hist, solved, rgb_array = (
[],
False,
self.env.render() if render else None,
)
# Generate an episode following the current policy
for _ in range(max_steps):
# Sample an action from the policy
action = self.choose_action(state, **kwargs)
# Take the action and observe the reward and next state
next_state, reward, done, _, _ = self.env.step(action)
if self.env_name == "FrozenLake-v1":
if done:
reward = 100 if reward == 1 else -10
else:
reward = -1
# Keeping track of the trajectory
episode_hist.append((state, action, reward))
yield episode_hist, solved, rgb_array
rgb_array = self.env.render() if render else None
# For CliffWalking-v0 and Taxi-v3, the episode is solved when it terminates
if done and (
self.env_name == "CliffWalking-v0" or self.env_name == "Taxi-v3"
):
solved = True
break
# For FrozenLake-v1, the episode terminates when the agent moves into a hole or reaches the goal
# We consider the episode solved when the agent reaches the goal
if done and self.env_name == "FrozenLake-v1":
if next_state == self.env.nrow * self.env.ncol - 1:
solved = True
# print("Solved!")
break
else:
done = False
next_state, _ = self.env.reset()
if solved or done:
break
state = next_state
rgb_array = self.env.render() if render else None
yield episode_hist, solved, rgb_array
def run_episode(self, max_steps=500, render=False, **kwargs):
# Run the generator until the end
episode_hist, solved, rgb_array = None, False, None
for episode_hist, solved, rgb_array in self.generate_episode(
max_steps, render, **kwargs
):
pass
return episode_hist, solved, rgb_array
def update_first_visit(self, episode_hist):
G = 0
# For each step of the episode, in reverse order
for t in range(len(episode_hist) - 1, -1, -1):
state, action, reward = episode_hist[t]
# Update the expected return
G = self.gamma * G + reward
# If we haven't already visited this state-action pair up to this point, then we can update the Q-table and policy
# This is the first-visit MC method
if (state, action) not in [(x[0], x[1]) for x in episode_hist[:t]]:
self.R[state][action].append(G)
self.Q[state, action] = np.mean(self.R[state][action])
# Epsilon-greedy policy update
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
# the greedy action is the one with the highest Q-value
self.Pi[state, np.argmax(self.Q[state])] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
def update_every_visit(self, episode_hist):
G = 0
# For each step of the episode, in reverse order
for t in range(len(episode_hist) - 1, -1, -1):
state, action, reward = episode_hist[t]
# Update the expected return
G = self.gamma * G + reward
# We update the Q-table and policy even if we have visited this state-action pair before
# This is the every-visit MC method
self.R[state][action].append(G)
self.Q[state, action] = np.mean(self.R[state][action])
# Epsilon-greedy policy update
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions)
# the greedy action is the one with the highest Q-value
self.Pi[state, np.argmax(self.Q[state])] = (
1 - self.epsilon + self.epsilon / self.n_actions
)
def train(
self,
n_train_episodes=2000,
test_every=100,
update_type="first_visit",
log_wandb=False,
save_best=True,
save_best_dir=None,
**kwargs,
):
print(f"Training agent for {n_train_episodes} episodes...")
(
train_running_success_rate,
test_success_rate,
test_running_success_rate,
avg_ep_len,
) = (0.0, 0.0, 0.0, 0.0)
stats = {
"train_running_success_rate": train_running_success_rate,
"test_running_success_rate": test_running_success_rate,
"test_success_rate": test_success_rate,
"avg_ep_len": avg_ep_len,
}
update_func = getattr(self, f"update_{update_type}")
tqrange = tqdm(range(n_train_episodes))
tqrange.set_description("Training")
if log_wandb:
self.wandb_log_img(episode=None)
for e in tqrange:
episode_hist, solved, _ = self.run_episode(**kwargs)
rewards = [x[2] for x in episode_hist]
total_reward, avg_reward = sum(rewards), np.mean(rewards)
train_running_success_rate = (
0.99 * train_running_success_rate + 0.01 * solved
)
avg_ep_len = 0.99 * avg_ep_len + 0.01 * len(episode_hist)
update_func(episode_hist)
stats = {
"train_running_success_rate": train_running_success_rate,
"test_running_success_rate": test_running_success_rate,
"test_success_rate": test_success_rate,
"avg_ep_len": avg_ep_len,
"total_reward": total_reward,
"avg_reward": avg_reward,
}
tqrange.set_postfix(stats)
# Test the agent every test_every episodes with the greedy policy (by default)
if e % test_every == 0:
test_success_rate = self.test(verbose=False, **kwargs)
if save_best and test_success_rate > 0.9:
if self.run_name is None:
print(f"Warning: run_name is None, not saving best policy")
else:
self.save_policy(self.run_name, save_best_dir)
if log_wandb:
self.wandb_log_img(episode=e)
test_running_success_rate = (
0.99 * test_running_success_rate + 0.01 * test_success_rate
)
stats["test_running_success_rate"] = test_running_success_rate
stats["test_success_rate"] = test_success_rate
tqrange.set_postfix(stats)
if log_wandb:
wandb.log(stats)
def test(self, n_test_episodes=100, verbose=True, greedy=True, **kwargs):
if verbose:
print(f"Testing agent for {n_test_episodes} episodes...")
num_successes = 0
for e in range(n_test_episodes):
_, solved, _ = self.run_episode(greedy=greedy, **kwargs)
num_successes += solved
if verbose:
word = "reached" if solved else "did not reach"
emoji = "🏁" if solved else "🚫"
print(
f"({e + 1:>{len(str(n_test_episodes))}}/{n_test_episodes}) - Agent {word} the goal {emoji}"
)
success_rate = num_successes / n_test_episodes
if verbose:
print(
f"Agent reached the goal in {num_successes}/{n_test_episodes} episodes ({success_rate * 100:.2f}%)"
)
return success_rate
def save_policy(self, fname="policy.npy", save_dir=None):
if save_dir is not None:
os.makedirs(save_dir, exist_ok=True)
fname = os.path.join(save_dir, fname)
print(f"Saving policy to: {fname}")
np.save(fname, self.Pi)
def load_policy(self, fname="policy.npy"):
print(f"Loading policy from: {fname}")
self.Pi = np.load(fname)
def wandb_log_img(self, episode=None):
caption_suffix = "Initial" if episode is None else f"After Episode {episode}"
wandb.log(
{
"Q-table": wandb.Image(
self.Q,
caption=f"Q-table - {caption_suffix}",
),
"Policy": wandb.Image(
self.Pi,
caption=f"Policy - {caption_suffix}",
),
}
)
def main():
parser = argparse.ArgumentParser()
### Train/Test parameters
parser.add_argument(
"--train",
action="store_true",
help="Use this flag to train the agent.",
)
parser.add_argument(
"--test",
type=str,
default=None,
help="Use this flag to test the agent. Provide the path to the policy file.",
)
parser.add_argument(
"--n_train_episodes",
type=int,
default=2500,
help="The number of episodes to train for. (default: 2500)",
)
parser.add_argument(
"--n_test_episodes",
type=int,
default=100,
help="The number of episodes to test for. (default: 100)",
)
parser.add_argument(
"--test_every",
type=int,
default=100,
help="During training, test the agent every n episodes. (default: 100)",
)
parser.add_argument(
"--max_steps",
type=int,
default=200,
help="The maximum number of steps per episode before the episode is forced to end. (default: 200)",
)
parser.add_argument(
"--update_type",
type=str,
choices=["first_visit", "every_visit"],
default="first_visit",
help="The type of update to use. (default: first_visit)",
)
parser.add_argument(
"--save_dir",
type=str,
default="policies",
help="The directory to save the policy to. (default: policies)",
)
parser.add_argument(
"--no_save",
action="store_true",
help="Use this flag to disable saving the policy.",
)
### Agent parameters
parser.add_argument(
"--gamma",
type=float,
default=1.0,
help="The value for the discount factor to use. (default: 1.0)",
)
parser.add_argument(
"--epsilon",
type=float,
default=0.4,
help="The value for the epsilon-greedy policy to use. (default: 0.4)",
)
### Environment parameters
parser.add_argument(
"--env",
type=str,
default="CliffWalking-v0",
choices=["CliffWalking-v0", "FrozenLake-v1", "Taxi-v3"],
help="The Gymnasium environment to use. (default: CliffWalking-v0)",
)
parser.add_argument(
"--render_mode",
type=str,
default=None,
help="Render mode passed to the gym.make() function. Use 'human' to render the environment. (default: None)",
)
parser.add_argument(
"--wandb_project",
type=str,
default=None,
help="WandB project name for logging. If not provided, no logging is done. (default: None)",
)
parser.add_argument(
"--wandb_group",
type=str,
default="monte-carlo",
help="WandB group name for logging. (default: monte-carlo)",
)
parser.add_argument(
"--wandb_job_type",
type=str,
default="train",
help="WandB job type for logging. (default: train)",
)
parser.add_argument(
"--wandb_run_name_suffix",
type=str,
default=None,
help="WandB run name suffix for logging. (default: None)",
)
args = parser.parse_args()
agent = MonteCarloAgent(
args.env,
gamma=args.gamma,
epsilon=args.epsilon,
render_mode=args.render_mode,
)
run_name = f"{agent.__class__.__name__}_{args.env}_e{args.n_train_episodes}_s{args.max_steps}_g{args.gamma}_e{args.epsilon}_{args.update_type}"
if args.wandb_run_name_suffix is not None:
run_name += f"+{args.wandb_run_name_suffix}"
agent.run_name = run_name
try:
if args.train:
# Log to WandB
if args.wandb_project is not None:
wandb.init(
project=args.wandb_project,
name=run_name,
group=args.wandb_group,
job_type=args.wandb_job_type,
config=dict(args._get_kwargs()),
)
agent.train(
n_train_episodes=args.n_train_episodes,
test_every=args.test_every,
n_test_episodes=args.n_test_episodes,
max_steps=args.max_steps,
update_type=args.update_type,
log_wandb=args.wandb_project is not None,
save_best=True,
save_best_dir=args.save_dir,
)
if not args.no_save:
agent.save_policy(
fname=f"{run_name}.npy",
save_dir=args.save_dir,
)
elif args.test is not None:
if not args.test.endswith(".npy"):
args.test += ".npy"
agent.load_policy(args.test)
agent.test(
n_test_episodes=args.n_test_episodes,
max_steps=args.max_steps,
)
else:
print("ERROR: Please provide either --train or --test.")
except KeyboardInterrupt:
print("Exiting...")
if __name__ == "__main__":
main()
|