Spaces:
Sleeping
Sleeping
File size: 12,032 Bytes
8ceccef 4567d2b 69d9811 8ceccef ed9cf21 8ceccef 4567d2b 8ceccef ed9cf21 1663f39 ed9cf21 8ceccef d922c89 4567d2b e24c7c0 4567d2b d922c89 e24c7c0 1663f39 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b d922c89 e24c7c0 8ceccef 4567d2b 1663f39 4567d2b d922c89 e24c7c0 8ceccef e24c7c0 8ceccef 4567d2b e24c7c0 8ceccef 4567d2b e24c7c0 4567d2b ed9cf21 8ceccef ed9cf21 9c2fd5e 8ceccef e24c7c0 8ceccef 6f3d0ef 53c3925 8ceccef 4567d2b 1663f39 4567d2b 8ceccef 9c2fd5e 8ceccef 4567d2b df12910 1663f39 6f3d0ef 1663f39 6f3d0ef 1663f39 6f3d0ef 1663f39 df12910 69d9811 4567d2b de8a156 69d9811 ed9cf21 69d9811 ed9cf21 de8a156 69d9811 ed9cf21 53c3925 ed9cf21 8ceccef 53c3925 8ceccef ed9cf21 9c2fd5e 8ceccef d922c89 de8a156 e24c7c0 9c2fd5e e24c7c0 1663f39 e24c7c0 ed9cf21 6f3d0ef ed9cf21 4567d2b 8ceccef 4567d2b 6f3d0ef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b ed9cf21 4567d2b ed9cf21 4567d2b d922c89 8ceccef 6f3d0ef 4567d2b 8ceccef 4567d2b 9c2fd5e 4567d2b e1ecbfa 9c2fd5e 4567d2b 8ceccef 4567d2b cb6905e 4567d2b 8ceccef 4567d2b d922c89 6f3d0ef e24c7c0 4567d2b e24c7c0 4567d2b e24c7c0 4567d2b 8ceccef 1663f39 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 4567d2b 8ceccef 6a793bc 8ceccef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import os
import time
import numpy as np
import gradio as gr
from MonteCarloAgent import MonteCarloAgent
import scipy.ndimage
import cv2
default_n_test_episodes = 10
default_max_steps = 500
# For the dropdown list of policies
policies_folder = "policies"
try:
all_policies = [
file for file in os.listdir(policies_folder) if file.endswith(".npy")
]
except FileNotFoundError:
print("ERROR: No policies folder found!")
all_policies = []
# All supported agents
agent_map = {
"MonteCarloAgent": MonteCarloAgent,
# TODO: Add DP Agent
}
action_map = {
"CliffWalking-v0": {
0: "up",
1: "right",
2: "down",
3: "left",
},
"FrozenLake-v1": {
0: "left",
1: "down",
2: "right",
3: "up",
},
}
pause_val_map = {
"▶️ Resume": False,
"⏸️ Pause": True,
}
pause_val_map_inv = {v: k for k, v in pause_val_map.items()}
# Global variables to allow changing it on the fly
live_render_fps = 5
live_epsilon = 0.0
live_paused = True
live_steps_forward = None
should_reset = False
# def reset():
# global should_reset
# should_reset = True
def change_render_fps(x):
print("Changing render fps:", x)
global live_render_fps
live_render_fps = x
def change_epsilon(x):
print("Changing greediness:", x)
global live_epsilon
live_epsilon = x
def change_paused(x):
print("Changing paused:", x)
global live_paused
live_paused = pause_val_map[x]
next_val = pause_val_map_inv[not live_paused]
return gr.update(value=next_val), gr.update(interactive=live_paused)
def onclick_btn_forward():
print("Step forward")
global live_steps_forward
if live_steps_forward is None:
live_steps_forward = 0
live_steps_forward += 1
def run(policy_fname, n_test_episodes, max_steps, render_fps, epsilon):
global live_render_fps, live_epsilon, live_paused, live_steps_forward, should_reset
live_render_fps = render_fps
live_epsilon = epsilon
live_steps_forward = None
print("=" * 80)
print("Running...")
print(f"- policy_fname: {policy_fname}")
print(f"- n_test_episodes: {n_test_episodes}")
print(f"- max_steps: {max_steps}")
print(f"- render_fps: {live_render_fps}")
print(f"- epsilon: {live_epsilon}")
policy_path = os.path.join(policies_folder, policy_fname)
props = policy_fname.split("_")
if len(props) < 2:
yield None, None, None, None, None, None, None, None, None, None, "🚫 Please select a valid policy file."
return
agent_type, env_name = props[0], props[1]
agent = agent_map[agent_type](env_name, render_mode="rgb_array")
agent.load_policy(policy_path)
env_action_map = action_map.get(env_name)
solved, rgb_array, policy_viz = None, None, None
episode, step, state, action, reward, last_reward = (
None,
None,
None,
None,
None,
None,
)
episodes_solved = 0
def ep_str(episode):
return (
f"{episode} / {n_test_episodes} ({(episode) / n_test_episodes * 100:.2f}%)"
)
def step_str(step):
return f"{step + 1}"
for episode in range(n_test_episodes):
time.sleep(0.5)
for step, (episode_hist, solved, rgb_array) in enumerate(
agent.generate_episode(
max_steps=max_steps, render=True, epsilon_override=live_epsilon
)
):
_, _, last_reward = (
episode_hist[-2] if len(episode_hist) > 1 else (None, None, None)
)
state, action, reward = episode_hist[-1]
curr_policy = agent.Pi[state]
rgb_array_height, rgb_array_width = 512, 768
rgb_array = cv2.resize(
rgb_array,
(
int(rgb_array.shape[1] / rgb_array.shape[0] * rgb_array_height),
rgb_array_height,
),
interpolation=cv2.INTER_AREA,
)
if rgb_array.shape[1] < rgb_array_width:
rgb_array_new = np.pad(
rgb_array,
(
(0, 0),
(
(rgb_array_width - rgb_array.shape[1]) // 2,
(rgb_array_width - rgb_array.shape[1]) // 2,
),
(0, 0),
),
"constant",
)
rgb_array = np.uint8(rgb_array_new)
viz_w = 384
viz_h = viz_w // len(curr_policy)
policy_viz = np.zeros((viz_h, viz_w))
for i, p in enumerate(curr_policy):
policy_viz[
:,
i
* (viz_w // len(curr_policy)) : (i + 1)
* (viz_w // len(curr_policy)),
] = p
policy_viz = scipy.ndimage.gaussian_filter(policy_viz, sigma=1.0)
policy_viz = np.clip(
policy_viz * (1.0 - live_epsilon) + live_epsilon / len(curr_policy),
0.0,
1.0,
)
cv2.putText(
policy_viz,
str(action),
(
int((action + 0.5) * viz_w // len(curr_policy) - 8),
viz_h // 2 - 10,
),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
1.0,
2,
cv2.LINE_AA,
)
if env_action_map:
action_name = env_action_map.get(action, "")
cv2.putText(
policy_viz,
action_name,
(
int(
(action + 0.5) * viz_w // len(curr_policy)
- 5 * len(action_name)
),
viz_h // 2 + 20,
),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
1.0,
2,
cv2.LINE_AA,
)
print(
f"Episode: {ep_str(episode + 1)} - step: {step_str(step)} - state: {state} - action: {action} - reward: {reward} (epsilon: {live_epsilon:.2f}) (frame time: {1 / live_render_fps:.2f}s)"
)
yield agent_type, env_name, rgb_array, policy_viz, ep_str(
episode + 1
), ep_str(episodes_solved), step_str(
step
), state, action, last_reward, "Running..."
if live_steps_forward is not None:
if live_steps_forward > 0:
live_steps_forward -= 1
if live_steps_forward == 0:
live_steps_forward = None
live_paused = True
else:
time.sleep(1 / live_render_fps)
while live_paused and live_steps_forward is None:
yield agent_type, env_name, rgb_array, policy_viz, ep_str(
episode + 1
), ep_str(episodes_solved), step_str(
step
), state, action, last_reward, "Paused..."
time.sleep(1 / live_render_fps)
# if should_reset is True:
# break
# if should_reset is True:
# should_reset = False
# return (
# agent_type,
# env_name,
# rgb_array,
# policy_viz,
# ep_str(episode + 1),
# ep_str(episodes_solved),
# step_str(step),
# state,
# action,
# last_reward,
# "Resetting...",
# )
if solved:
episodes_solved += 1
time.sleep(0.5)
yield agent_type, env_name, rgb_array, policy_viz, ep_str(episode + 1), ep_str(
episodes_solved
), step_str(step), state, action, reward, "Done!"
with gr.Blocks(title="CS581 Demo") as demo:
gr.components.HTML(
"<h1>CS581 Final Project Demo - Reinforcement Learning: From Dynamic Programming to Monte-Carlo</h1>"
)
gr.components.HTML("<h2>Select Configuration:</h2>")
with gr.Row():
input_policy = gr.components.Dropdown(
label="Policy Checkpoint",
choices=all_policies,
value=all_policies[0] if all_policies else "No policies found :(",
)
out_environment = gr.components.Textbox(label="Resolved Environment")
out_agent = gr.components.Textbox(label="Resolved Agent")
with gr.Row():
input_n_test_episodes = gr.components.Slider(
minimum=1,
maximum=1000,
value=default_n_test_episodes,
label="Number of episodes",
)
input_max_steps = gr.components.Slider(
minimum=1,
maximum=1000,
value=default_max_steps,
label="Max steps per episode",
)
btn_run = gr.components.Button("👀 Select", interactive=bool(all_policies))
gr.components.HTML("<h2>Live Visualization & Information:</h2>")
with gr.Row():
with gr.Column():
with gr.Row():
out_episode = gr.components.Textbox(label="Current Episode")
out_step = gr.components.Textbox(label="Current Step")
out_eps_solved = gr.components.Textbox(label="Episodes Solved")
with gr.Row():
out_state = gr.components.Textbox(label="Current State")
out_action = gr.components.Textbox(label="Chosen Action")
out_reward = gr.components.Textbox(label="Last Reward")
out_image_policy = gr.components.Image(
# value=np.ones((16, 128)),
# shape=(16, 128),
label="Action Sampled vs Policy Distribution for Current State",
type="numpy",
image_mode="RGB",
)
with gr.Row():
input_epsilon = gr.components.Slider(
minimum=0,
maximum=1,
value=live_epsilon,
label="Epsilon (0 = greedy, 1 = random)",
)
input_epsilon.change(change_epsilon, inputs=[input_epsilon])
input_render_fps = gr.components.Slider(
minimum=1, maximum=60, value=live_render_fps, label="Simulation speed (fps)"
)
input_render_fps.change(change_render_fps, inputs=[input_render_fps])
out_image_frame = gr.components.Image(
label="Environment", type="numpy", image_mode="RGB", shape=(512, 768)
)
with gr.Row():
btn_pause = gr.components.Button(
pause_val_map_inv[not live_paused], interactive=True
)
btn_forward = gr.components.Button("⏩ Step")
btn_pause.click(
fn=change_paused,
inputs=[btn_pause],
outputs=[btn_pause, btn_forward],
)
btn_forward.click(
fn=onclick_btn_forward,
)
out_msg = gr.components.Textbox(
value=""
if all_policies
else "ERROR: No policies found! Please train an agent first or add a policy to the policies folder.",
label="Status Message",
)
# input_policy.change(fn=reset)
btn_run.click(
fn=run,
inputs=[
input_policy,
input_n_test_episodes,
input_max_steps,
input_render_fps,
input_epsilon,
],
outputs=[
out_agent,
out_environment,
out_image_frame,
out_image_policy,
out_episode,
out_eps_solved,
out_step,
out_state,
out_action,
out_reward,
out_msg,
],
)
demo.queue(concurrency_count=3)
demo.launch()
|