Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import gymnasium as gym | |
from tqdm import tqdm | |
import argparse | |
from gymnasium.envs.toy_text.frozen_lake import generate_random_map | |
import wandb | |
from .Shared import Shared | |
class MonteCarloAgent(Shared): | |
def __init__( | |
self, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.reset() | |
def reset(self): | |
print("Resetting all state variables...") | |
self.Q = np.zeros((self.n_states, self.n_actions)) | |
self.R = [[[] for _ in range(self.n_actions)] for _ in range(self.n_states)] | |
# An arbitrary e-greedy policy | |
self.Pi = np.full( | |
(self.n_states, self.n_actions), self.epsilon / self.n_actions | |
) | |
self.Pi[ | |
np.arange(self.n_states), | |
np.random.randint(self.n_actions, size=self.n_states), | |
] = ( | |
1 - self.epsilon + self.epsilon / self.n_actions | |
) | |
print("=" * 80) | |
print("Initial policy:") | |
print(self.Pi) | |
print("=" * 80) | |
def update_first_visit(self, episode_hist): | |
G = 0 | |
# For each step of the episode, in reverse order | |
for t in range(len(episode_hist) - 1, -1, -1): | |
state, action, reward = episode_hist[t] | |
# Update the expected return | |
G = self.gamma * G + reward | |
# If we haven't already visited this state-action pair up to this point, then we can update the Q-table and policy | |
# This is the first-visit MC method | |
if (state, action) not in [(x[0], x[1]) for x in episode_hist[:t]]: | |
self.R[state][action].append(G) | |
self.Q[state, action] = np.mean(self.R[state][action]) | |
# Epsilon-greedy policy update | |
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions) | |
# the greedy action is the one with the highest Q-value | |
self.Pi[state, np.argmax(self.Q[state])] = ( | |
1 - self.epsilon + self.epsilon / self.n_actions | |
) | |
def update_every_visit(self, episode_hist): | |
G = 0 | |
# For each step of the episode, in reverse order | |
for t in range(len(episode_hist) - 1, -1, -1): | |
state, action, reward = episode_hist[t] | |
# Update the expected return | |
G = self.gamma * G + reward | |
# We update the Q-table and policy even if we have visited this state-action pair before | |
# This is the every-visit MC method | |
self.R[state][action].append(G) | |
self.Q[state, action] = np.mean(self.R[state][action]) | |
# Epsilon-greedy policy update | |
self.Pi[state] = np.full(self.n_actions, self.epsilon / self.n_actions) | |
# the greedy action is the one with the highest Q-value | |
self.Pi[state, np.argmax(self.Q[state])] = ( | |
1 - self.epsilon + self.epsilon / self.n_actions | |
) | |
def train( | |
self, | |
n_train_episodes=2000, | |
test_every=100, | |
update_type="first_visit", | |
log_wandb=False, | |
save_best=True, | |
save_best_dir=None, | |
**kwargs, | |
): | |
print(f"Training agent for {n_train_episodes} episodes...") | |
( | |
train_running_success_rate, | |
test_success_rate, | |
test_running_success_rate, | |
avg_ep_len, | |
) = (0.0, 0.0, 0.0, 0.0) | |
stats = { | |
"train_running_success_rate": train_running_success_rate, | |
"test_running_success_rate": test_running_success_rate, | |
"test_success_rate": test_success_rate, | |
"avg_ep_len": avg_ep_len, | |
} | |
update_func = getattr(self, f"update_{update_type}") | |
tqrange = tqdm(range(n_train_episodes)) | |
tqrange.set_description("Training") | |
if log_wandb: | |
self.wandb_log_img(episode=None) | |
for e in tqrange: | |
episode_hist, solved, _ = self.run_episode(**kwargs) | |
rewards = [x[2] for x in episode_hist] | |
total_reward, avg_reward = sum(rewards), np.mean(rewards) | |
train_running_success_rate = ( | |
0.99 * train_running_success_rate + 0.01 * solved | |
) | |
avg_ep_len = 0.99 * avg_ep_len + 0.01 * len(episode_hist) | |
update_func(episode_hist) | |
stats = { | |
"train_running_success_rate": train_running_success_rate, | |
"test_running_success_rate": test_running_success_rate, | |
"test_success_rate": test_success_rate, | |
"avg_ep_len": avg_ep_len, | |
"total_reward": total_reward, | |
"avg_reward": avg_reward, | |
} | |
tqrange.set_postfix(stats) | |
# Test the agent every test_every episodes with the greedy policy (by default) | |
if e % test_every == 0: | |
test_success_rate = self.test(verbose=False, **kwargs) | |
if save_best and test_success_rate > 0.9: | |
if self.run_name is None: | |
print(f"Warning: run_name is None, not saving best policy") | |
else: | |
self.save_policy(self.run_name, save_best_dir) | |
if log_wandb: | |
self.wandb_log_img(episode=e) | |
test_running_success_rate = ( | |
0.99 * test_running_success_rate + 0.01 * test_success_rate | |
) | |
stats["test_running_success_rate"] = test_running_success_rate | |
stats["test_success_rate"] = test_success_rate | |
tqrange.set_postfix(stats) | |
if log_wandb: | |
wandb.log(stats) | |
def wandb_log_img(self, episode=None): | |
caption_suffix = "Initial" if episode is None else f"After Episode {episode}" | |
wandb.log( | |
{ | |
"Q-table": wandb.Image( | |
self.Q, | |
caption=f"Q-table - {caption_suffix}", | |
), | |
"Policy": wandb.Image( | |
self.Pi, | |
caption=f"Policy - {caption_suffix}", | |
), | |
} | |
) | |
def main(): | |
parser = argparse.ArgumentParser() | |
### Train/Test parameters | |
parser.add_argument( | |
"--train", | |
action="store_true", | |
help="Use this flag to train the agent.", | |
) | |
parser.add_argument( | |
"--test", | |
type=str, | |
default=None, | |
help="Use this flag to test the agent. Provide the path to the policy file.", | |
) | |
parser.add_argument( | |
"--n_train_episodes", | |
type=int, | |
default=2500, | |
help="The number of episodes to train for. (default: 2500)", | |
) | |
parser.add_argument( | |
"--n_test_episodes", | |
type=int, | |
default=100, | |
help="The number of episodes to test for. (default: 100)", | |
) | |
parser.add_argument( | |
"--test_every", | |
type=int, | |
default=100, | |
help="During training, test the agent every n episodes. (default: 100)", | |
) | |
parser.add_argument( | |
"--max_steps", | |
type=int, | |
default=200, | |
help="The maximum number of steps per episode before the episode is forced to end. (default: 200)", | |
) | |
parser.add_argument( | |
"--update_type", | |
type=str, | |
choices=["first_visit", "every_visit"], | |
default="first_visit", | |
help="The type of update to use. (default: first_visit)", | |
) | |
parser.add_argument( | |
"--save_dir", | |
type=str, | |
default="policies", | |
help="The directory to save the policy to. (default: policies)", | |
) | |
parser.add_argument( | |
"--no_save", | |
action="store_true", | |
help="Use this flag to disable saving the policy.", | |
) | |
### Agent parameters | |
parser.add_argument( | |
"--gamma", | |
type=float, | |
default=1.0, | |
help="The value for the discount factor to use. (default: 1.0)", | |
) | |
parser.add_argument( | |
"--epsilon", | |
type=float, | |
default=0.4, | |
help="The value for the epsilon-greedy policy to use. (default: 0.4)", | |
) | |
### Environment parameters | |
parser.add_argument( | |
"--env", | |
type=str, | |
default="CliffWalking-v0", | |
choices=["CliffWalking-v0", "FrozenLake-v1", "Taxi-v3"], | |
help="The Gymnasium environment to use. (default: CliffWalking-v0)", | |
) | |
parser.add_argument( | |
"--render_mode", | |
type=str, | |
default=None, | |
help="Render mode passed to the gym.make() function. Use 'human' to render the environment. (default: None)", | |
) | |
parser.add_argument( | |
"--wandb_project", | |
type=str, | |
default=None, | |
help="WandB project name for logging. If not provided, no logging is done. (default: None)", | |
) | |
parser.add_argument( | |
"--wandb_group", | |
type=str, | |
default="monte-carlo", | |
help="WandB group name for logging. (default: monte-carlo)", | |
) | |
parser.add_argument( | |
"--wandb_job_type", | |
type=str, | |
default="train", | |
help="WandB job type for logging. (default: train)", | |
) | |
parser.add_argument( | |
"--wandb_run_name_suffix", | |
type=str, | |
default=None, | |
help="WandB run name suffix for logging. (default: None)", | |
) | |
args = parser.parse_args() | |
agent = MonteCarloAgent( | |
args.env, | |
gamma=args.gamma, | |
epsilon=args.epsilon, | |
render_mode=args.render_mode, | |
) | |
run_name = f"{agent.__class__.__name__}_{args.env}_e{args.n_train_episodes}_s{args.max_steps}_g{args.gamma}_e{args.epsilon}_{args.update_type}" | |
if args.wandb_run_name_suffix is not None: | |
run_name += f"+{args.wandb_run_name_suffix}" | |
agent.run_name = run_name | |
try: | |
if args.train: | |
# Log to WandB | |
if args.wandb_project is not None: | |
wandb.init( | |
project=args.wandb_project, | |
name=run_name, | |
group=args.wandb_group, | |
job_type=args.wandb_job_type, | |
config=dict(args._get_kwargs()), | |
) | |
agent.train( | |
n_train_episodes=args.n_train_episodes, | |
test_every=args.test_every, | |
n_test_episodes=args.n_test_episodes, | |
max_steps=args.max_steps, | |
update_type=args.update_type, | |
log_wandb=args.wandb_project is not None, | |
save_best=True, | |
save_best_dir=args.save_dir, | |
) | |
if not args.no_save: | |
agent.save_policy( | |
fname=f"{run_name}.npy", | |
save_dir=args.save_dir, | |
) | |
elif args.test is not None: | |
if not args.test.endswith(".npy"): | |
args.test += ".npy" | |
agent.load_policy(args.test) | |
agent.test( | |
n_test_episodes=args.n_test_episodes, | |
max_steps=args.max_steps, | |
) | |
else: | |
print("ERROR: Please provide either --train or --test.") | |
except KeyboardInterrupt: | |
print("Exiting...") | |
if __name__ == "__main__": | |
main() | |