File size: 1,550 Bytes
0cfd68a
 
 
 
 
65a3485
 
 
0cfd68a
4415c8e
 
 
 
 
0cfd68a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a3485
 
0cfd68a
 
 
 
 
 
 
4ffd843
0cfd68a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from haystack.document_stores import InMemoryDocumentStore
import pandas as pd
import gradio as gr

df=pd.read_parquet('df.parquet')
dirname='lot3'

df['fileclean']=df.file.str.replace(f'.*{dirname}/[^/]+/','').str.replace('[\(\)]','').str.replace('/[^/]+$','').str.replace('/',' ').str.replace('-',' ').str.replace(' 0+',' ')
candidats=pd.read_parquet('candidats.parquet')
df2=pd.read_parquet('df2.parquet')
for c in df2.columns:
  candidats[c]=candidats[c].astype(str)
  df2[c]=df2[c].astype(str)
candidats=candidats.merge(df2)

document_store = InMemoryDocumentStore(use_bm25=True)
docs=df.drop_duplicates(subset=['fileclean']).rename(columns={'fileclean':'content'}).to_dict(orient='records')
document_store.write_documents(docs)
from haystack.nodes import BM25Retriever
retriever = BM25Retriever(document_store=document_store)
from haystack.pipelines import DocumentSearchPipeline
pipeline = DocumentSearchPipeline(retriever=retriever)

def semanticsearch(query):
    result = pipeline.run(
          query=query,
          params={
              "Retriever": {
                  "top_k": 10
              }
          },debug=False
      )
    results=[]
    for document in result['documents']:
        result=document.meta
        result['score']=document.score
        results.append(result)
    results=pd.DataFrame(results)
    return results

demo = gr.Interface(
    semanticsearch,
    [
        gr.Dropdown(candidats.sort_values(by='text').text.tolist()),
    ],
    [gr.Dataframe()]
    
)

if __name__ == "__main__":
    demo.launch()