Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from transformers import CLIPTextModel | |
from diffusers import ( | |
StableDiffusionPipeline, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionXLPipeline, | |
StableDiffusion3Pipeline, | |
#FluxPipeline, | |
DDIMScheduler, | |
PNDMScheduler, | |
DPMSolverSinglestepScheduler, | |
AutoencoderKL, | |
LCMScheduler, | |
) | |
from diffusers.loaders.single_file_utils import convert_ldm_unet_checkpoint | |
from adaface.util import UNetEnsemble | |
from adaface.face_id_to_ada_prompt import create_id2ada_prompt_encoder | |
from adaface.diffusers_attn_lora_capture import set_up_attn_processors, set_up_ffn_loras, set_lora_and_capture_flags | |
from safetensors.torch import load_file as safetensors_load_file | |
import re, os | |
import numpy as np | |
from peft.utils.constants import DUMMY_TARGET_MODULES | |
class AdaFaceWrapper(nn.Module): | |
def __init__(self, pipeline_name, base_model_path, adaface_encoder_types, | |
adaface_ckpt_paths, adaface_encoder_cfg_scales=None, | |
enabled_encoders=None, use_lcm=False, default_scheduler_name='ddim', | |
num_inference_steps=50, subject_string='z', negative_prompt=None, | |
use_840k_vae=False, use_ds_text_encoder=False, | |
main_unet_filepath=None, unet_types=None, extra_unet_dirpaths=None, unet_weights_in_ensemble=None, | |
enable_static_img_suffix_embs=None, unet_uses_attn_lora=False, | |
attn_lora_layer_names=['q', 'k', 'v', 'out'], shrink_cross_attn=False, q_lora_updates_query=False, | |
device='cuda', is_training=False): | |
''' | |
pipeline_name: "text2img", "text2imgxl", "img2img", "text2img3", "flux", or None. | |
If None, it's used only as a face encoder, and the unet and vae are | |
removed from the pipeline to release RAM. | |
''' | |
super().__init__() | |
self.pipeline_name = pipeline_name | |
self.base_model_path = base_model_path | |
self.adaface_encoder_types = adaface_encoder_types | |
self.adaface_ckpt_paths = adaface_ckpt_paths | |
self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales | |
self.enabled_encoders = enabled_encoders | |
# None, or a list of two bools for two encoders. If None, both are disabled. | |
self.enable_static_img_suffix_embs = enable_static_img_suffix_embs | |
self.unet_uses_attn_lora = unet_uses_attn_lora | |
self.attn_lora_layer_names = attn_lora_layer_names | |
self.q_lora_updates_query = q_lora_updates_query | |
self.use_lcm = use_lcm | |
self.subject_string = subject_string | |
self.shrink_cross_attn = shrink_cross_attn | |
self.default_scheduler_name = default_scheduler_name | |
self.num_inference_steps = num_inference_steps if not use_lcm else 4 | |
self.use_840k_vae = use_840k_vae | |
self.use_ds_text_encoder = use_ds_text_encoder | |
self.main_unet_filepath = main_unet_filepath | |
self.unet_types = unet_types | |
self.extra_unet_dirpaths = extra_unet_dirpaths | |
self.unet_weights_in_ensemble = unet_weights_in_ensemble | |
self.device = device | |
self.is_training = is_training | |
if negative_prompt is None: | |
self.negative_prompt = \ | |
"flaws in the eyes, flaws in the face, lowres, non-HDRi, low quality, worst quality, artifacts, noise, text, watermark, glitch, " \ | |
"mutated, ugly, disfigured, hands, partially rendered objects, partially rendered eyes, deformed eyeballs, cross-eyed, blurry, " \ | |
"mutation, duplicate, out of frame, cropped, mutilated, bad anatomy, deformed, bad proportions, " \ | |
"nude, naked, nsfw, topless, bare breasts" | |
else: | |
self.negative_prompt = negative_prompt | |
self.initialize_pipeline() | |
# During inference, we never use static image suffix embeddings. | |
# So num_id_vecs is the length of the returned adaface embeddings for each encoder. | |
self.encoders_num_id_vecs = np.array(self.id2ada_prompt_encoder.encoders_num_id_vecs) | |
self.encoders_num_static_img_suffix_embs = np.array(self.id2ada_prompt_encoder.encoders_num_static_img_suffix_embs) | |
if self.enable_static_img_suffix_embs is not None: | |
assert len(self.enable_static_img_suffix_embs) == len(self.encoders_num_id_vecs) | |
self.encoders_num_static_img_suffix_embs *= np.array(self.enable_static_img_suffix_embs) | |
self.encoders_num_id_vecs += self.encoders_num_static_img_suffix_embs | |
self.img_prompt_embs = None | |
self.extend_tokenizer_and_text_encoder() | |
def to(self, device): | |
self.device = device | |
self.id2ada_prompt_encoder.to(device) | |
self.pipeline.to(device) | |
print(f"Moved AdaFaceWrapper to {device}.") | |
return self | |
def initialize_pipeline(self): | |
self.id2ada_prompt_encoder = create_id2ada_prompt_encoder(self.adaface_encoder_types, | |
self.adaface_ckpt_paths, | |
self.adaface_encoder_cfg_scales, | |
self.enabled_encoders, | |
num_static_img_suffix_embs=4) | |
self.id2ada_prompt_encoder.to(self.device) | |
print(f"adaface_encoder_cfg_scales: {self.adaface_encoder_cfg_scales}") | |
if self.use_840k_vae: | |
# The 840000-step vae model is slightly better in face details than the original vae model. | |
# https://huggingface.co/stabilityai/sd-vae-ft-mse-original | |
vae = AutoencoderKL.from_single_file("models/diffusers/sd-vae-ft-mse-original/vae-ft-mse-840000-ema-pruned.ckpt", | |
torch_dtype=torch.float16) | |
else: | |
vae = None | |
if self.use_ds_text_encoder: | |
# The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder. | |
# https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder | |
text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder", | |
torch_dtype=torch.float16) | |
else: | |
text_encoder = None | |
remove_unet = False | |
if self.pipeline_name == "img2img": | |
PipelineClass = StableDiffusionImg2ImgPipeline | |
elif self.pipeline_name == "text2img": | |
PipelineClass = StableDiffusionPipeline | |
elif self.pipeline_name == "text2imgxl": | |
PipelineClass = StableDiffusionXLPipeline | |
elif self.pipeline_name == "text2img3": | |
PipelineClass = StableDiffusion3Pipeline | |
#elif self.pipeline_name == "flux": | |
# PipelineClass = FluxPipeline | |
# pipeline_name is None means only use this instance to generate adaface embeddings, not to generate images. | |
elif self.pipeline_name is None: | |
PipelineClass = StableDiffusionPipeline | |
remove_unet = True | |
else: | |
raise ValueError(f"Unknown pipeline name: {self.pipeline_name}") | |
if self.base_model_path is None: | |
base_model_path_dict = { | |
'text2img': 'models/sd15-dste8-vae.safetensors', | |
'text2imgxl': 'stabilityai/stable-diffusion-xl-base-1.0', | |
'text2img3': 'stabilityai/stable-diffusion-3-medium-diffusers', | |
'flux': 'black-forest-labs/FLUX.1-schnell', | |
} | |
self.base_model_path = base_model_path_dict[self.pipeline_name] | |
if os.path.isfile(self.base_model_path): | |
pipeline = PipelineClass.from_single_file( | |
self.base_model_path, | |
torch_dtype=torch.float16 | |
) | |
else: | |
pipeline = PipelineClass.from_pretrained( | |
self.base_model_path, | |
torch_dtype=torch.float16, | |
safety_checker=None | |
) | |
if self.use_lcm: | |
lcm_path_dict = { | |
'text2img': 'latent-consistency/lcm-lora-sdv1-5', | |
'text2imgxl': 'latent-consistency/lcm-lora-sdxl', | |
} | |
if self.pipeline_name not in lcm_path_dict: | |
raise ValueError(f"Pipeline {self.pipeline_name} does not support LCM.") | |
lcm_path = lcm_path_dict[self.pipeline_name] | |
pipeline.load_lora_weights(lcm_path) | |
pipeline.fuse_lora() | |
print(f"Loaded LCM weights from {lcm_path}.") | |
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) | |
if self.main_unet_filepath is not None: | |
print(f"Replacing the UNet with the UNet from {self.main_unet_filepath}.") | |
ret = pipeline.unet.load_state_dict(self.load_unet_from_file(self.main_unet_filepath, device='cpu')) | |
if len(ret.missing_keys) > 0: | |
print(f"Missing keys: {ret.missing_keys}") | |
if len(ret.unexpected_keys) > 0: | |
print(f"Unexpected keys: {ret.unexpected_keys}") | |
if (self.unet_types is not None and len(self.unet_types) > 0) \ | |
or (self.extra_unet_dirpaths is not None and len(self.extra_unet_dirpaths) > 0): | |
unet_ensemble = UNetEnsemble([pipeline.unet], self.unet_types, self.extra_unet_dirpaths, self.unet_weights_in_ensemble, | |
device=self.device, torch_dtype=torch.float16) | |
pipeline.unet = unet_ensemble | |
print(f"Loaded pipeline from {self.base_model_path}.") | |
if not remove_unet and (self.unet_uses_attn_lora or self.shrink_cross_attn): | |
unet2 = self.load_unet_lora_weights(pipeline.unet, use_attn_lora=self.unet_uses_attn_lora, | |
attn_lora_layer_names=self.attn_lora_layer_names, | |
shrink_cross_attn=self.shrink_cross_attn, | |
q_lora_updates_query=self.q_lora_updates_query) | |
pipeline.unet = unet2 | |
if self.use_840k_vae: | |
pipeline.vae = vae | |
print("Replaced the VAE with the 840k-step VAE.") | |
if self.use_ds_text_encoder: | |
pipeline.text_encoder = text_encoder | |
print("Replaced the text encoder with the DreamShaper text encoder.") | |
if remove_unet: | |
# Remove unet and vae to release RAM. Only keep tokenizer and text_encoder. | |
pipeline.unet = None | |
pipeline.vae = None | |
print("Removed UNet and VAE from the pipeline.") | |
if self.pipeline_name not in ["text2imgxl", "text2img3", "flux"] and not self.use_lcm: | |
if self.default_scheduler_name == 'ddim': | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
timestep_spacing="leading", | |
rescale_betas_zero_snr=False, | |
) | |
elif self.default_scheduler_name == 'pndm': | |
noise_scheduler = PNDMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
set_alpha_to_one=False, | |
steps_offset=1, | |
timestep_spacing="leading", | |
skip_prk_steps=True, | |
) | |
elif self.default_scheduler_name == 'dpm++': | |
noise_scheduler = DPMSolverSinglestepScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
prediction_type="epsilon", | |
num_train_timesteps=1000, | |
trained_betas=None, | |
thresholding=False, | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
lower_order_final=True, | |
use_karras_sigmas=True, | |
) | |
else: | |
breakpoint() | |
pipeline.scheduler = noise_scheduler | |
# Otherwise, if not use_lcm, pipeline.scheduler == FlowMatchEulerDiscreteScheduler | |
# if use_lcm, pipeline.scheduler == LCMScheduler | |
self.pipeline = pipeline.to(self.device) | |
def set_adaface_encoder_cfg_scales(self, adaface_encoder_cfg_scales): | |
self.adaface_encoder_cfg_scales = adaface_encoder_cfg_scales | |
self.id2ada_prompt_encoder.set_out_id_embs_cfg_scale(adaface_encoder_cfg_scales) | |
def load_unet_from_file(self, unet_path, device=None): | |
if os.path.isfile(unet_path): | |
if unet_path.endswith(".safetensors"): | |
unet_state_dict = safetensors_load_file(unet_path, device=device) | |
else: | |
unet_state_dict = torch.load(unet_path, map_location=device) | |
key0 = list(unet_state_dict.keys())[0] | |
if key0.startswith("model.diffusion_model"): | |
key_prefix = "" | |
is_ldm_unet = True | |
elif key0.startswith("diffusion_model"): | |
key_prefix = "model." | |
is_ldm_unet = True | |
else: | |
is_ldm_unet = False | |
if is_ldm_unet: | |
unet_state_dict2 = {} | |
for key, value in unet_state_dict.items(): | |
key2 = key_prefix + key | |
unet_state_dict2[key2] = value | |
print(f"LDM UNet detected. Convert to diffusers") | |
ldm_unet_config = { 'layers_per_block': 2 } | |
unet_state_dict = convert_ldm_unet_checkpoint(unet_state_dict2, ldm_unet_config) | |
else: | |
raise ValueError(f"UNet path {unet_path} is not a file.") | |
return unet_state_dict | |
# Adapted from ConsistentIDPipeline:set_ip_adapter(). | |
def load_unet_loras(self, unet, unet_lora_modules_state_dict, | |
use_attn_lora=True, use_ffn_lora=False, | |
attn_lora_layer_names=['q', 'k', 'v', 'out'], | |
shrink_cross_attn=False, cross_attn_shrink_factor=0.5, | |
q_lora_updates_query=False): | |
attn_capture_procs, attn_opt_modules = \ | |
set_up_attn_processors(unet, use_attn_lora=True, attn_lora_layer_names=attn_lora_layer_names, | |
lora_rank=192, lora_scale_down=8, | |
cross_attn_shrink_factor=cross_attn_shrink_factor, | |
q_lora_updates_query=q_lora_updates_query) | |
# up_blocks.3.resnets.[1~2].conv1, conv2, conv_shortcut. [12] matches 1 or 2. | |
if use_ffn_lora: | |
target_modules_pat = 'up_blocks.3.resnets.[12].conv[a-z0-9_]+' | |
else: | |
# A special pattern, "dummy-target-modules" tells PEFT to add loras on NONE of the layers. | |
# We couldn't simply skip PEFT initialization (converting unet to a PEFT model), | |
# otherwise the attn lora layers will cause nan quickly during a fp16 training. | |
target_modules_pat = DUMMY_TARGET_MODULES | |
unet, ffn_lora_layers, ffn_opt_modules = \ | |
set_up_ffn_loras(unet, target_modules_pat=target_modules_pat, lora_uses_dora=True) | |
# self.attn_capture_procs and ffn_lora_layers will be used in set_lora_and_capture_flags(). | |
self.attn_capture_procs = list(attn_capture_procs.values()) | |
self.ffn_lora_layers = list(ffn_lora_layers.values()) | |
# Combine attn_opt_modules and ffn_opt_modules into unet_lora_modules. | |
# unet_lora_modules is for optimization and loading/saving. | |
unet_lora_modules = {} | |
# attn_opt_modules and ffn_opt_modules have different depths of keys. | |
# attn_opt_modules: | |
# up_blocks_3_attentions_1_transformer_blocks_0_attn2_processor_std_shrink_factor, | |
# up_blocks_3_attentions_1_transformer_blocks_0_attn2_processor_to_q_lora_lora_A, ... | |
# ffn_opt_modules: | |
# base_model_model_up_blocks_3_resnets_1_conv1_lora_A, ... | |
# with the prefix 'base_model_model_'. Because ffn_opt_modules are extracted from the peft-wrapped model, | |
# and attn_opt_modules are extracted from the original unet model. | |
# To be compatible with old param keys, we append 'base_model_model_' to the keys of attn_opt_modules. | |
unet_lora_modules.update({ f'base_model_model_{k}': v for k, v in attn_opt_modules.items() }) | |
unet_lora_modules.update(ffn_opt_modules) | |
# ParameterDict can contain both Parameter and nn.Module. | |
# TODO: maybe in the future, we couldn't put nn.Module in nn.ParameterDict. | |
self.unet_lora_modules = torch.nn.ParameterDict(unet_lora_modules) | |
missing, unexpected = self.unet_lora_modules.load_state_dict(unet_lora_modules_state_dict, strict=False) | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
print(f"Loaded {len(unet_lora_modules_state_dict)} LoRA weights on the UNet:\n{unet_lora_modules.keys()}") | |
self.outfeat_capture_blocks.append(unet.up_blocks[3]) | |
# If shrink_cross_attn is True and use_attn_lora is False, we load all these params from ckpt, | |
# but since we set use_attn_lora to False, attn loras won't be used during inference nonetheless. | |
set_lora_and_capture_flags(unet, None, self.attn_capture_procs, self.outfeat_capture_blocks, | |
use_attn_lora, use_ffn_lora, 'recon_loss', capture_ca_activations=False, | |
shrink_cross_attn=shrink_cross_attn) | |
return unet | |
def load_unet_lora_weights(self, unet, use_attn_lora=True, attn_lora_layer_names=['q', 'k', 'v', 'out'], | |
shrink_cross_attn=False, q_lora_updates_query=False): | |
unet_lora_weight_found = False | |
if isinstance(self.adaface_ckpt_paths, str): | |
adaface_ckpt_paths = [self.adaface_ckpt_paths] | |
else: | |
adaface_ckpt_paths = self.adaface_ckpt_paths | |
for adaface_ckpt_path in adaface_ckpt_paths: | |
ckpt_dict = torch.load(adaface_ckpt_path, map_location='cpu') | |
if 'unet_lora_modules' in ckpt_dict: | |
unet_lora_modules_state_dict = ckpt_dict['unet_lora_modules'] | |
print(f"{len(unet_lora_modules_state_dict)} LoRA weights found in {adaface_ckpt_path}.") | |
unet_lora_weight_found = True | |
break | |
# Since unet lora weights are not found in the adaface ckpt, we give up on loading unet attn processors. | |
if not unet_lora_weight_found: | |
print(f"LoRA weights not found in {self.adaface_ckpt_paths}.") | |
return unet | |
self.outfeat_capture_blocks = [] | |
if isinstance(unet, UNetEnsemble): | |
for i, unet_ in enumerate(unet.unets): | |
unet_ = self.load_unet_loras(unet_, unet_lora_modules_state_dict, | |
use_attn_lora=use_attn_lora, | |
attn_lora_layer_names=attn_lora_layer_names, | |
shrink_cross_attn=shrink_cross_attn, | |
q_lora_updates_query=q_lora_updates_query) | |
unet.unets[i] = unet_ | |
print(f"Loaded LoRA processors on UNetEnsemble of {len(unet.unets)} UNets.") | |
else: | |
unet = self.load_unet_loras(unet, unet_lora_modules_state_dict, | |
use_attn_lora=use_attn_lora, | |
attn_lora_layer_names=attn_lora_layer_names, | |
shrink_cross_attn=shrink_cross_attn, | |
q_lora_updates_query=q_lora_updates_query) | |
return unet | |
def extend_tokenizer_and_text_encoder(self): | |
if np.sum(self.encoders_num_id_vecs) < 1: | |
raise ValueError(f"encoders_num_id_vecs has to be larger or equal to 1, but is {self.encoders_num_id_vecs}") | |
tokenizer = self.pipeline.tokenizer | |
# If adaface_encoder_types is ["arc2face", "consistentID"], then total_num_id_vecs = 20. | |
# We add z_0_0, z_0_1, z_0_2, ..., z_0_15, z_1_0, z_1_1, z_1_2, z_1_3 to the tokenizer. | |
self.all_placeholder_tokens = [] | |
self.placeholder_tokens_strs = [] | |
self.encoder_placeholder_tokens = [] | |
for i in range(len(self.adaface_encoder_types)): | |
placeholder_tokens = [] | |
for j in range(self.encoders_num_id_vecs[i]): | |
placeholder_tokens.append(f"{self.subject_string}_{i}_{j}") | |
placeholder_tokens_str = " ".join(placeholder_tokens) | |
self.all_placeholder_tokens.extend(placeholder_tokens) | |
self.encoder_placeholder_tokens.append(placeholder_tokens) | |
self.placeholder_tokens_strs.append(placeholder_tokens_str) | |
self.all_placeholder_tokens_str = " ".join(self.placeholder_tokens_strs) | |
self.updated_tokens_str = self.all_placeholder_tokens_str | |
# all_null_placeholder_tokens_str: ", , , , ..." (20 times). | |
# It just contains the commas and spaces with the same length, but no actual tokens. | |
self.all_null_placeholder_tokens_str = " ".join([", "] * len(self.all_placeholder_tokens)) | |
# Add the new tokens to the tokenizer. | |
num_added_tokens = tokenizer.add_tokens(self.all_placeholder_tokens) | |
if num_added_tokens != np.sum(self.encoders_num_id_vecs): | |
raise ValueError( | |
f"The tokenizer already contains some of the tokens {self.all_placeholder_tokens_str}. Please pass a different" | |
" `subject_string` that is not already in the tokenizer.") | |
print(f"Added {num_added_tokens} tokens ({self.all_placeholder_tokens_str}) to the tokenizer.") | |
# placeholder_token_ids: [49408, ..., 49427]. | |
self.placeholder_token_ids = tokenizer.convert_tokens_to_ids(self.all_placeholder_tokens) | |
#print("New tokens:", self.placeholder_token_ids) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
old_weight_shape = self.pipeline.text_encoder.get_input_embeddings().weight.shape | |
self.pipeline.text_encoder.resize_token_embeddings(len(tokenizer)) | |
new_weight = self.pipeline.text_encoder.get_input_embeddings().weight | |
print(f"Resized text encoder token embeddings from {old_weight_shape} to {new_weight.shape} on {new_weight.device}.") | |
# Extend pipeline.text_encoder with the adaface subject emeddings. | |
# subj_embs: [16, 768]. | |
def update_text_encoder_subj_embeddings(self, subj_embs, lens_subj_emb_segments): | |
# Initialise the newly added placeholder token with the embeddings of the initializer token | |
# token_embeds: [49412, 768] | |
token_embeds = self.pipeline.text_encoder.get_input_embeddings().weight.data | |
all_encoders_updated_tokens = [] | |
all_encoders_updated_token_strs = [] | |
idx = 0 | |
with torch.no_grad(): | |
# sum of lens_subj_emb_segments are probably shorter than self.placeholder_token_ids, | |
# when some static_img_suffix_embs are disabled. | |
for i, encoder_type in enumerate(self.adaface_encoder_types): | |
encoder_updated_tokens = [] | |
if (self.enabled_encoders is not None) and (encoder_type not in self.enabled_encoders): | |
idx += lens_subj_emb_segments[i] | |
continue | |
for j in range(lens_subj_emb_segments[i]): | |
placeholder_token = f"{self.subject_string}_{i}_{j}" | |
token_id = self.pipeline.tokenizer.convert_tokens_to_ids(placeholder_token) | |
token_embeds[token_id] = subj_embs[idx] | |
encoder_updated_tokens.append(placeholder_token) | |
idx += 1 | |
all_encoders_updated_tokens.extend(encoder_updated_tokens) | |
all_encoders_updated_token_strs.append(" ".join(encoder_updated_tokens)) | |
self.updated_tokens_str = " ".join(all_encoders_updated_token_strs) | |
self.all_encoders_updated_token_strs = all_encoders_updated_token_strs | |
print(f"Updated {len(all_encoders_updated_tokens)} tokens ({self.updated_tokens_str}) in the text encoder.") | |
def update_prompt(self, prompt, placeholder_tokens_pos='append', | |
repeat_prompt_for_each_encoder=True, | |
use_null_placeholders=False): | |
if prompt is None: | |
prompt = "" | |
if use_null_placeholders: | |
all_placeholder_tokens_str = self.all_null_placeholder_tokens_str | |
if not re.search(r"\b(man|woman|person|child|girl|boy)\b", prompt.lower()): | |
all_placeholder_tokens_str = "person " + all_placeholder_tokens_str | |
repeat_prompt_for_each_encoder = False | |
else: | |
all_placeholder_tokens_str = self.updated_tokens_str | |
# Delete the subject_string from the prompt. | |
prompt = re.sub(r'\b(a|an|the)\s+' + self.subject_string + r'\b,?', "", prompt) | |
prompt = re.sub(r'\b' + self.subject_string + r'\b,?', "", prompt) | |
# Prevously, arc2face ada prompts work better if they are prepended to the prompt, | |
# and consistentID ada prompts work better if they are appended to the prompt. | |
# When we do joint training, seems both work better if they are appended to the prompt. | |
# Therefore we simply appended all placeholder_tokens_str's to the prompt. | |
# NOTE: Prepending them hurts compositional prompts. | |
if repeat_prompt_for_each_encoder: | |
encoder_prompts = [] | |
for encoder_updated_token_strs in self.all_encoders_updated_token_strs: | |
if placeholder_tokens_pos == 'prepend': | |
encoder_prompt = encoder_updated_token_strs + " " + prompt | |
elif placeholder_tokens_pos == 'append': | |
encoder_prompt = prompt + " " + encoder_updated_token_strs | |
else: | |
breakpoint() | |
encoder_prompts.append(encoder_prompt) | |
prompt = ", ".join(encoder_prompts) | |
else: | |
if placeholder_tokens_pos == 'prepend': | |
prompt = all_placeholder_tokens_str + " " + prompt | |
elif placeholder_tokens_pos == 'append': | |
prompt = prompt + " " + all_placeholder_tokens_str | |
else: | |
breakpoint() | |
return prompt | |
# NOTE: all_adaface_subj_embs is the input to the CLIP text encoder. | |
# ** DO NOT use it as prompt_embeds in the forward() method. | |
# If face_id_embs is None, then it extracts face_id_embs from the images, | |
# then map them to ada prompt embeddings. | |
# avg_at_stage: 'id_emb', 'img_prompt_emb', or None. | |
# avg_at_stage == ada_prompt_emb usually produces the worst results. | |
# id_emb is slightly better than img_prompt_emb, but sometimes img_prompt_emb is better. | |
def prepare_adaface_embeddings(self, image_paths, face_id_embs=None, | |
avg_at_stage='id_emb', # id_emb, img_prompt_emb, ada_prompt_emb, or None. | |
perturb_at_stage=None, # id_emb, img_prompt_emb, or None. | |
perturb_std=0, update_text_encoder=True): | |
all_adaface_subj_embs, img_prompt_embs, lens_subj_emb_segments = \ | |
self.id2ada_prompt_encoder.generate_adaface_embeddings(\ | |
image_paths, face_id_embs=face_id_embs, | |
img_prompt_embs=None, | |
avg_at_stage=avg_at_stage, | |
perturb_at_stage=perturb_at_stage, | |
perturb_std=perturb_std, | |
enable_static_img_suffix_embs=self.enable_static_img_suffix_embs) | |
if all_adaface_subj_embs is None: | |
return None | |
self.img_prompt_embs = img_prompt_embs | |
if all_adaface_subj_embs.ndim == 4: | |
# [1, 1, 20, 768] -> [20, 768] | |
all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0).squeeze(0) | |
elif all_adaface_subj_embs.ndim == 3: | |
# [1, 20, 768] -> [20, 768] | |
all_adaface_subj_embs = all_adaface_subj_embs.squeeze(0) | |
if update_text_encoder: | |
self.update_text_encoder_subj_embeddings(all_adaface_subj_embs, lens_subj_emb_segments) | |
return all_adaface_subj_embs | |
def diffusers_encode_prompts(self, prompt, plain_prompt, negative_prompt, device): | |
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_ are used by text2img3 and flux. | |
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None | |
# Compatible with older versions of diffusers. | |
if not hasattr(self.pipeline, "encode_prompt"): | |
# prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768]. | |
prompt_embeds_, negative_prompt_embeds_ = \ | |
self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt) | |
prompt_embeds_ = prompt_embeds_.unsqueeze(0) | |
negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0) | |
else: | |
if self.pipeline_name in ["text2imgxl", "text2img3", "flux"]: | |
prompt_2 = plain_prompt | |
# CLIP Text Encoder prompt uses a maximum sequence length of 77. | |
# T5 Text Encoder prompt uses a maximum sequence length of 256. | |
# 333 = 256 + 77. | |
prompt_t5 = prompt + "".join([", "] * 256) | |
# prompt_embeds_, negative_prompt_embeds_: [1, 333, 4096] | |
# pooled_prompt_embeds_, negative_pooled_prompt_embeds_: [1, 2048] | |
if self.pipeline_name == "text2imgxl": | |
prompt_embeds_, negative_prompt_embeds_, \ | |
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \ | |
self.pipeline.encode_prompt(prompt, prompt_2, device=device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt) | |
elif self.pipeline_name == "text2img3": | |
prompt_embeds_, negative_prompt_embeds_, \ | |
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \ | |
self.pipeline.encode_prompt(prompt, prompt_2, prompt_t5, device=device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt) | |
elif self.pipeline_name == "flux": | |
# prompt_embeds_: [1, 512, 4096] | |
# pooled_prompt_embeds_: [1, 768] | |
prompt_embeds_, pooled_prompt_embeds_, text_ids = \ | |
self.pipeline.encode_prompt(prompt, prompt_t5, device=device, | |
num_images_per_prompt=1) | |
negative_prompt_embeds_ = negative_pooled_prompt_embeds_ = None | |
else: | |
breakpoint() | |
else: | |
# "text2img" and "img2img" pipelines. | |
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] | |
prompt_embeds_, negative_prompt_embeds_ = \ | |
self.pipeline.encode_prompt(prompt, device=device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt) | |
return prompt_embeds_, negative_prompt_embeds_, \ | |
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ | |
# alt_prompt_embed_type: 'ada-nonmix', 'img' | |
def mix_ada_embs_with_other_embs(self, prompt, prompt_embeds, | |
alt_prompt_embed_type, alt_prompt_emb_weights): | |
# Scan prompt and replace tokens in self.placeholder_token_ids | |
# with the corresponding image embeddings. | |
prompt_tokens = self.pipeline.tokenizer.tokenize(prompt) | |
prompt_embeds2 = prompt_embeds.clone() | |
if alt_prompt_embed_type == 'img': | |
if self.img_prompt_embs is None: | |
print("Unable to find img_prompt_embs. Either prepare_adaface_embeddings() hasn't been called, or faceless images were used.") | |
return prompt_embeds | |
# self.img_prompt_embs: [1, 20, 768] | |
repl_embeddings = self.img_prompt_embs | |
elif alt_prompt_embed_type == 'ada-nonmix': | |
repl_embeddings_, _, _, _ = self.encode_prompt(prompt, ablate_prompt_only_placeholders=True, | |
verbose=True) | |
# repl_embeddings_: [1, 77, 768] -> [1, 20, 768] | |
repl_embeddings = repl_embeddings_[:, 1:len(self.all_placeholder_tokens)+1] | |
else: | |
breakpoint() | |
repl_tokens = {} | |
for i in range(len(prompt_tokens)): | |
if prompt_tokens[i] in self.all_placeholder_tokens: | |
encoder_idx = next((i for i, sublist in enumerate(self.encoder_placeholder_tokens) \ | |
if prompt_tokens[i] in sublist), 0) | |
alt_prompt_emb_weight = alt_prompt_emb_weights[encoder_idx] | |
prompt_embeds2[:, i] = prompt_embeds2[:, i] * (1 - alt_prompt_emb_weight) \ | |
+ repl_embeddings[:, self.all_placeholder_tokens.index(prompt_tokens[i])] * alt_prompt_emb_weight | |
repl_tokens[prompt_tokens[i]] = 1 | |
repl_token_count = len(repl_tokens) | |
if np.all(np.array(alt_prompt_emb_weights) == 1): | |
print(f"Replaced {repl_token_count} tokens with {alt_prompt_embed_type} embeddings.") | |
else: | |
print(f"Mixed {repl_token_count} tokens with {alt_prompt_embed_type} embeddings, weight {alt_prompt_emb_weights}.") | |
return prompt_embeds2 | |
def encode_prompt(self, prompt, negative_prompt=None, | |
placeholder_tokens_pos='append', | |
ablate_prompt_only_placeholders=False, | |
ablate_prompt_no_placeholders=False, | |
ablate_prompt_embed_type='ada', # 'ada', 'ada-nonmix', 'img' | |
nonmix_prompt_emb_weight=0, | |
repeat_prompt_for_each_encoder=True, | |
device=None, verbose=False): | |
if negative_prompt is None: | |
negative_prompt = self.negative_prompt | |
if device is None: | |
device = self.device | |
plain_prompt = prompt | |
if ablate_prompt_only_placeholders: | |
prompt = self.updated_tokens_str | |
else: | |
prompt = self.update_prompt(prompt, placeholder_tokens_pos=placeholder_tokens_pos, | |
repeat_prompt_for_each_encoder=repeat_prompt_for_each_encoder, | |
use_null_placeholders=ablate_prompt_no_placeholders) | |
if verbose: | |
print(f"Subject prompt:\n{prompt}") | |
# For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device). | |
# So we manually move it to GPU here. | |
self.pipeline.text_encoder.to(device) | |
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = \ | |
self.diffusers_encode_prompts(prompt, plain_prompt, negative_prompt, device) | |
if ablate_prompt_embed_type != 'ada': | |
alt_prompt_embed_type = ablate_prompt_embed_type | |
alt_prompt_emb_weights = (1, 1) | |
elif nonmix_prompt_emb_weight > 0: | |
alt_prompt_embed_type = 'ada-nonmix' | |
alt_prompt_emb_weights = (nonmix_prompt_emb_weight, nonmix_prompt_emb_weight) | |
else: | |
alt_prompt_emb_weights = (0, 0) | |
if sum(alt_prompt_emb_weights) > 0: | |
prompt_embeds_ = self.mix_ada_embs_with_other_embs(prompt, prompt_embeds_, | |
alt_prompt_embed_type, alt_prompt_emb_weights) | |
return prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, negative_pooled_prompt_embeds_ | |
# ref_img_strength is used only in the img2img pipeline. | |
def forward(self, noise, prompt, prompt_embeds=None, negative_prompt=None, | |
placeholder_tokens_pos='append', | |
guidance_scale=6.0, out_image_count=4, | |
ref_img_strength=0.8, generator=None, | |
ablate_prompt_only_placeholders=False, | |
ablate_prompt_no_placeholders=False, | |
ablate_prompt_embed_type='ada', # 'ada', 'ada-nonmix', 'img' | |
nonmix_prompt_emb_weight=0, | |
repeat_prompt_for_each_encoder=True, | |
verbose=False): | |
noise = noise.to(device=self.device, dtype=torch.float16) | |
if self.use_lcm: | |
guidance_scale = 0 | |
if negative_prompt is None: | |
negative_prompt = self.negative_prompt | |
# prompt_embeds_, negative_prompt_embeds_: [1, 77, 768] | |
if prompt_embeds is None: | |
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \ | |
negative_pooled_prompt_embeds_ = \ | |
self.encode_prompt(prompt, negative_prompt, | |
placeholder_tokens_pos=placeholder_tokens_pos, | |
ablate_prompt_only_placeholders=ablate_prompt_only_placeholders, | |
ablate_prompt_no_placeholders=ablate_prompt_no_placeholders, | |
ablate_prompt_embed_type=ablate_prompt_embed_type, | |
nonmix_prompt_emb_weight=nonmix_prompt_emb_weight, | |
repeat_prompt_for_each_encoder=repeat_prompt_for_each_encoder, | |
device=self.device, | |
verbose=verbose) | |
else: | |
if len(prompt_embeds) == 2: | |
prompt_embeds_, negative_prompt_embeds_ = prompt_embeds | |
pooled_prompt_embeds_, negative_pooled_prompt_embeds_ = None, None | |
elif len(prompt_embeds) == 4: | |
prompt_embeds_, negative_prompt_embeds_, pooled_prompt_embeds_, \ | |
negative_pooled_prompt_embeds_ = prompt_embeds | |
else: | |
breakpoint() | |
# Repeat the prompt embeddings for all images in the batch. | |
prompt_embeds_ = prompt_embeds_.repeat(out_image_count, 1, 1) | |
if negative_prompt_embeds_ is not None: | |
negative_prompt_embeds_ = negative_prompt_embeds_.repeat(out_image_count, 1, 1) | |
if self.pipeline_name in ["text2imgxl", "text2img3"]: | |
pooled_prompt_embeds_ = pooled_prompt_embeds_.repeat(out_image_count, 1) | |
negative_pooled_prompt_embeds_ = negative_pooled_prompt_embeds_.repeat(out_image_count, 1) | |
# noise: [BS, 4, 64, 64] | |
# When the pipeline is text2img, strength is ignored. | |
images = self.pipeline(prompt_embeds=prompt_embeds_, | |
negative_prompt_embeds=negative_prompt_embeds_, | |
pooled_prompt_embeds=pooled_prompt_embeds_, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds_, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator).images | |
elif self.pipeline_name == "flux": | |
images = self.pipeline(prompt_embeds=prompt_embeds_, | |
pooled_prompt_embeds=pooled_prompt_embeds_, | |
num_inference_steps=4, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator).images | |
else: | |
# When the pipeline is text2img, noise: [BS, 4, 64, 64], and strength is ignored. | |
# When the pipeline is img2img, noise is an initiali image of [BS, 3, 512, 512], | |
# whose pixels are normalized to [0, 1]. | |
images = self.pipeline(image=noise, | |
prompt_embeds=prompt_embeds_, | |
negative_prompt_embeds=negative_prompt_embeds_, | |
num_inference_steps=self.num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
strength=ref_img_strength, | |
generator=generator).images | |
# images: [BS, 3, 512, 512] | |
return images | |