Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import json | |
import os | |
from pathlib import Path | |
from typing import Any, Dict, List, Tuple, Union | |
import numpy as np | |
from tqdm import tqdm | |
from .datasets import VisionDataset | |
from .utils import convert_target_to_relative, crop_bboxes_from_image | |
__all__ = ["CORD"] | |
class CORD(VisionDataset): | |
"""CORD dataset from `"CORD: A Consolidated Receipt Dataset forPost-OCR Parsing" | |
<https://openreview.net/pdf?id=SJl3z659UH>`_. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/cord-grid.png&src=0 | |
:align: center | |
>>> from doctr.datasets import CORD | |
>>> train_set = CORD(train=True, download=True) | |
>>> img, target = train_set[0] | |
Args: | |
---- | |
train: whether the subset should be the training one | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
recognition_task: whether the dataset should be used for recognition task | |
**kwargs: keyword arguments from `VisionDataset`. | |
""" | |
TRAIN = ( | |
"https://doctr-static.mindee.com/models?id=v0.1.1/cord_train.zip&src=0", | |
"45f9dc77f126490f3e52d7cb4f70ef3c57e649ea86d19d862a2757c9c455d7f8", | |
"cord_train.zip", | |
) | |
TEST = ( | |
"https://doctr-static.mindee.com/models?id=v0.1.1/cord_test.zip&src=0", | |
"8c895e3d6f7e1161c5b7245e3723ce15c04d84be89eaa6093949b75a66fb3c58", | |
"cord_test.zip", | |
) | |
def __init__( | |
self, | |
train: bool = True, | |
use_polygons: bool = False, | |
recognition_task: bool = False, | |
**kwargs: Any, | |
) -> None: | |
url, sha256, name = self.TRAIN if train else self.TEST | |
super().__init__( | |
url, | |
name, | |
sha256, | |
True, | |
pre_transforms=convert_target_to_relative if not recognition_task else None, | |
**kwargs, | |
) | |
# List images | |
tmp_root = os.path.join(self.root, "image") | |
self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = [] | |
self.train = train | |
np_dtype = np.float32 | |
for img_path in tqdm(iterable=os.listdir(tmp_root), desc="Unpacking CORD", total=len(os.listdir(tmp_root))): | |
# File existence check | |
if not os.path.exists(os.path.join(tmp_root, img_path)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, img_path)}") | |
stem = Path(img_path).stem | |
_targets = [] | |
with open(os.path.join(self.root, "json", f"{stem}.json"), "rb") as f: | |
label = json.load(f) | |
for line in label["valid_line"]: | |
for word in line["words"]: | |
if len(word["text"]) > 0: | |
x = word["quad"]["x1"], word["quad"]["x2"], word["quad"]["x3"], word["quad"]["x4"] | |
y = word["quad"]["y1"], word["quad"]["y2"], word["quad"]["y3"], word["quad"]["y4"] | |
box: Union[List[float], np.ndarray] | |
if use_polygons: | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
box = np.array( | |
[ | |
[x[0], y[0]], | |
[x[1], y[1]], | |
[x[2], y[2]], | |
[x[3], y[3]], | |
], | |
dtype=np_dtype, | |
) | |
else: | |
# Reduce 8 coords to 4 -> xmin, ymin, xmax, ymax | |
box = [min(x), min(y), max(x), max(y)] | |
_targets.append((word["text"], box)) | |
text_targets, box_targets = zip(*_targets) | |
if recognition_task: | |
crops = crop_bboxes_from_image( | |
img_path=os.path.join(tmp_root, img_path), geoms=np.asarray(box_targets, dtype=int).clip(min=0) | |
) | |
for crop, label in zip(crops, list(text_targets)): | |
self.data.append((crop, label)) | |
else: | |
self.data.append(( | |
img_path, | |
dict(boxes=np.asarray(box_targets, dtype=int).clip(min=0), labels=list(text_targets)), | |
)) | |
self.root = tmp_root | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |