Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import glob | |
import json | |
import os | |
from pathlib import Path | |
from typing import Any, Dict, List, Tuple, Union | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from .datasets import AbstractDataset | |
from .utils import convert_target_to_relative, crop_bboxes_from_image | |
__all__ = ["IMGUR5K"] | |
class IMGUR5K(AbstractDataset): | |
"""IMGUR5K dataset from `"TextStyleBrush: Transfer of Text Aesthetics from a Single Example" | |
<https://arxiv.org/abs/2106.08385>`_ | | |
`repository <https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset>`_. | |
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/imgur5k-grid.png&src=0 | |
:align: center | |
:width: 630 | |
:height: 400 | |
>>> # NOTE: You need to download/generate the dataset from the repository. | |
>>> from doctr.datasets import IMGUR5K | |
>>> train_set = IMGUR5K(train=True, img_folder="/path/to/IMGUR5K-Handwriting-Dataset/images", | |
>>> label_path="/path/to/IMGUR5K-Handwriting-Dataset/dataset_info/imgur5k_annotations.json") | |
>>> img, target = train_set[0] | |
>>> test_set = IMGUR5K(train=False, img_folder="/path/to/IMGUR5K-Handwriting-Dataset/images", | |
>>> label_path="/path/to/IMGUR5K-Handwriting-Dataset/dataset_info/imgur5k_annotations.json") | |
>>> img, target = test_set[0] | |
Args: | |
---- | |
img_folder: folder with all the images of the dataset | |
label_path: path to the annotations file of the dataset | |
train: whether the subset should be the training one | |
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones) | |
recognition_task: whether the dataset should be used for recognition task | |
**kwargs: keyword arguments from `AbstractDataset`. | |
""" | |
def __init__( | |
self, | |
img_folder: str, | |
label_path: str, | |
train: bool = True, | |
use_polygons: bool = False, | |
recognition_task: bool = False, | |
**kwargs: Any, | |
) -> None: | |
super().__init__( | |
img_folder, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs | |
) | |
# File existence check | |
if not os.path.exists(label_path) or not os.path.exists(img_folder): | |
raise FileNotFoundError(f"unable to locate {label_path if not os.path.exists(label_path) else img_folder}") | |
self.data: List[Tuple[Union[str, Path, np.ndarray], Union[str, Dict[str, Any]]]] = [] | |
self.train = train | |
np_dtype = np.float32 | |
img_names = os.listdir(img_folder) | |
train_samples = int(len(img_names) * 0.9) | |
set_slice = slice(train_samples) if self.train else slice(train_samples, None) | |
# define folder to write IMGUR5K recognition dataset | |
reco_folder_name = "IMGUR5K_recognition_train" if self.train else "IMGUR5K_recognition_test" | |
reco_folder_name = "Poly_" + reco_folder_name if use_polygons else reco_folder_name | |
reco_folder_path = os.path.join(os.path.dirname(self.root), reco_folder_name) | |
reco_images_counter = 0 | |
if recognition_task and os.path.isdir(reco_folder_path): | |
self._read_from_folder(reco_folder_path) | |
return | |
elif recognition_task and not os.path.isdir(reco_folder_path): | |
os.makedirs(reco_folder_path, exist_ok=False) | |
with open(label_path) as f: | |
annotation_file = json.load(f) | |
for img_name in tqdm(iterable=img_names[set_slice], desc="Unpacking IMGUR5K", total=len(img_names[set_slice])): | |
img_path = Path(img_folder, img_name) | |
img_id = img_name.split(".")[0] | |
# File existence check | |
if not os.path.exists(os.path.join(self.root, img_name)): | |
raise FileNotFoundError(f"unable to locate {os.path.join(self.root, img_name)}") | |
# some files have no annotations which are marked with only a dot in the 'word' key | |
# ref: https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/blob/main/README.md | |
if img_id not in annotation_file["index_to_ann_map"].keys(): | |
continue | |
ann_ids = annotation_file["index_to_ann_map"][img_id] | |
annotations = [annotation_file["ann_id"][a_id] for a_id in ann_ids] | |
labels = [ann["word"] for ann in annotations if ann["word"] != "."] | |
# x_center, y_center, width, height, angle | |
_boxes = [ | |
list(map(float, ann["bounding_box"].strip("[ ]").split(", "))) | |
for ann in annotations | |
if ann["word"] != "." | |
] | |
# (x, y) coordinates of top left, top right, bottom right, bottom left corners | |
box_targets = [cv2.boxPoints(((box[0], box[1]), (box[2], box[3]), box[4])) for box in _boxes] # type: ignore[arg-type] | |
if not use_polygons: | |
# xmin, ymin, xmax, ymax | |
box_targets = [np.concatenate((points.min(0), points.max(0)), axis=-1) for points in box_targets] | |
# filter images without boxes | |
if len(box_targets) > 0: | |
if recognition_task: | |
crops = crop_bboxes_from_image( | |
img_path=os.path.join(self.root, img_name), geoms=np.asarray(box_targets, dtype=np_dtype) | |
) | |
for crop, label in zip(crops, labels): | |
if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0: | |
# write data to disk | |
with open(os.path.join(reco_folder_path, f"{reco_images_counter}.txt"), "w") as f: | |
f.write(label) | |
tmp_img = Image.fromarray(crop) | |
tmp_img.save(os.path.join(reco_folder_path, f"{reco_images_counter}.png")) | |
reco_images_counter += 1 | |
else: | |
self.data.append((img_path, dict(boxes=np.asarray(box_targets, dtype=np_dtype), labels=labels))) | |
if recognition_task: | |
self._read_from_folder(reco_folder_path) | |
def extra_repr(self) -> str: | |
return f"train={self.train}" | |
def _read_from_folder(self, path: str) -> None: | |
for img_path in glob.glob(os.path.join(path, "*.png")): | |
with open(os.path.join(path, f"{os.path.basename(img_path)[:-4]}.txt"), "r") as f: | |
self.data.append((img_path, f.read())) | |