Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization | |
from typing import Dict, List, Tuple, Union | |
import cv2 | |
import numpy as np | |
import pyclipper | |
from shapely.geometry import Polygon | |
from ..core import DetectionPostProcessor | |
__all__ = ["DBPostProcessor"] | |
class DBPostProcessor(DetectionPostProcessor): | |
"""Implements a post processor for DBNet adapted from the implementation of `xuannianz | |
<https://github.com/xuannianz/DifferentiableBinarization>`_. | |
Args: | |
---- | |
unclip ratio: ratio used to unshrink polygons | |
min_size_box: minimal length (pix) to keep a box | |
max_candidates: maximum boxes to consider in a single page | |
box_thresh: minimal objectness score to consider a box | |
bin_thresh: threshold used to binzarized p_map at inference time | |
""" | |
def __init__( | |
self, | |
box_thresh: float = 0.1, | |
bin_thresh: float = 0.3, | |
assume_straight_pages: bool = True, | |
) -> None: | |
super().__init__(box_thresh, bin_thresh, assume_straight_pages) | |
self.unclip_ratio = 1.5 | |
def polygon_to_box( | |
self, | |
points: np.ndarray, | |
) -> np.ndarray: | |
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon | |
Args: | |
---- | |
points: The first parameter. | |
Returns: | |
------- | |
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle) | |
""" | |
if not self.assume_straight_pages: | |
# Compute the rectangle polygon enclosing the raw polygon | |
rect = cv2.minAreaRect(points) | |
points = cv2.boxPoints(rect) | |
# Add 1 pixel to correct cv2 approx | |
area = (rect[1][0] + 1) * (1 + rect[1][1]) | |
length = 2 * (rect[1][0] + rect[1][1]) + 2 | |
else: | |
poly = Polygon(points) | |
area = poly.area | |
length = poly.length | |
distance = area * self.unclip_ratio / length # compute distance to expand polygon | |
offset = pyclipper.PyclipperOffset() | |
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | |
_points = offset.Execute(distance) | |
# Take biggest stack of points | |
idx = 0 | |
if len(_points) > 1: | |
max_size = 0 | |
for _idx, p in enumerate(_points): | |
if len(p) > max_size: | |
idx = _idx | |
max_size = len(p) | |
# We ensure that _points can be correctly casted to a ndarray | |
_points = [_points[idx]] | |
expanded_points: np.ndarray = np.asarray(_points) # expand polygon | |
if len(expanded_points) < 1: | |
return None # type: ignore[return-value] | |
return ( | |
cv2.boundingRect(expanded_points) # type: ignore[return-value] | |
if self.assume_straight_pages | |
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0) | |
) | |
def bitmap_to_boxes( | |
self, | |
pred: np.ndarray, | |
bitmap: np.ndarray, | |
) -> np.ndarray: | |
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes | |
Args: | |
---- | |
pred: Pred map from differentiable binarization output | |
bitmap: Bitmap map computed from pred (binarized) | |
angle_tol: Comparison tolerance of the angle with the median angle across the page | |
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop | |
Returns: | |
------- | |
np tensor boxes for the bitmap, each box is a 5-element list | |
containing x, y, w, h, score for the box | |
""" | |
height, width = bitmap.shape[:2] | |
min_size_box = 2 | |
boxes: List[Union[np.ndarray, List[float]]] = [] | |
# get contours from connected components on the bitmap | |
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours: | |
# Check whether smallest enclosing bounding box is not too small | |
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): | |
continue | |
# Compute objectness | |
if self.assume_straight_pages: | |
x, y, w, h = cv2.boundingRect(contour) | |
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) | |
score = self.box_score(pred, points, assume_straight_pages=True) | |
else: | |
score = self.box_score(pred, contour, assume_straight_pages=False) | |
if score < self.box_thresh: # remove polygons with a weak objectness | |
continue | |
if self.assume_straight_pages: | |
_box = self.polygon_to_box(points) | |
else: | |
_box = self.polygon_to_box(np.squeeze(contour)) | |
# Remove too small boxes | |
if self.assume_straight_pages: | |
if _box is None or _box[2] < min_size_box or _box[3] < min_size_box: | |
continue | |
elif np.linalg.norm(_box[2, :] - _box[0, :], axis=-1) < min_size_box: | |
continue | |
if self.assume_straight_pages: | |
x, y, w, h = _box | |
# compute relative polygon to get rid of img shape | |
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height | |
boxes.append([xmin, ymin, xmax, ymax, score]) | |
else: | |
# compute relative box to get rid of img shape, in that case _box is a 4pt polygon | |
if not isinstance(_box, np.ndarray) and _box.shape == (4, 2): | |
raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)") | |
_box[:, 0] /= width | |
_box[:, 1] /= height | |
boxes.append(_box) | |
if not self.assume_straight_pages: | |
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype) | |
else: | |
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) | |
class _DBNet: | |
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization" | |
<https://arxiv.org/pdf/1911.08947.pdf>`_. | |
Args: | |
---- | |
feature extractor: the backbone serving as feature extractor | |
fpn_channels: number of channels each extracted feature maps is mapped to | |
""" | |
shrink_ratio = 0.4 | |
thresh_min = 0.3 | |
thresh_max = 0.7 | |
min_size_box = 3 | |
assume_straight_pages: bool = True | |
def compute_distance( | |
xs: np.ndarray, | |
ys: np.ndarray, | |
a: np.ndarray, | |
b: np.ndarray, | |
eps: float = 1e-6, | |
) -> float: | |
"""Compute the distance for each point of the map (xs, ys) to the (a, b) segment | |
Args: | |
---- | |
xs : map of x coordinates (height, width) | |
ys : map of y coordinates (height, width) | |
a: first point defining the [ab] segment | |
b: second point defining the [ab] segment | |
eps: epsilon to avoid division by zero | |
Returns: | |
------- | |
The computed distance | |
""" | |
square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1]) | |
square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1]) | |
square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1]) | |
cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps) | |
cosin = np.clip(cosin, -1.0, 1.0) | |
square_sin = 1 - np.square(cosin) | |
square_sin = np.nan_to_num(square_sin) | |
result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist + eps) | |
result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0] | |
return result | |
def draw_thresh_map( | |
self, | |
polygon: np.ndarray, | |
canvas: np.ndarray, | |
mask: np.ndarray, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
"""Draw a polygon treshold map on a canvas, as described in the DB paper | |
Args: | |
---- | |
polygon : array of coord., to draw the boundary of the polygon | |
canvas : threshold map to fill with polygons | |
mask : mask for training on threshold polygons | |
""" | |
if polygon.ndim != 2 or polygon.shape[1] != 2: | |
raise AttributeError("polygon should be a 2 dimensional array of coords") | |
# Augment polygon by shrink_ratio | |
polygon_shape = Polygon(polygon) | |
distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length | |
subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples | |
padding = pyclipper.PyclipperOffset() | |
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | |
padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0]) | |
# Fill the mask with 1 on the new padded polygon | |
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # type: ignore[call-overload] | |
# Get min/max to recover polygon after distance computation | |
xmin = padded_polygon[:, 0].min() | |
xmax = padded_polygon[:, 0].max() | |
ymin = padded_polygon[:, 1].min() | |
ymax = padded_polygon[:, 1].max() | |
width = xmax - xmin + 1 | |
height = ymax - ymin + 1 | |
# Get absolute polygon for distance computation | |
polygon[:, 0] = polygon[:, 0] - xmin | |
polygon[:, 1] = polygon[:, 1] - ymin | |
# Get absolute padded polygon | |
xs: np.ndarray = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width)) | |
ys: np.ndarray = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width)) | |
# Compute distance map to fill the padded polygon | |
distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype) | |
for i in range(polygon.shape[0]): | |
j = (i + 1) % polygon.shape[0] | |
absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j]) | |
distance_map[i] = np.clip(absolute_distance / distance, 0, 1) | |
distance_map = np.min(distance_map, axis=0) | |
# Clip the padded polygon inside the canvas | |
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1) | |
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1) | |
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1) | |
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1) | |
# Fill the canvas with the distances computed inside the valid padded polygon | |
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1] = np.fmax( | |
1 | |
- distance_map[ | |
ymin_valid - ymin : ymax_valid - ymax + height, xmin_valid - xmin : xmax_valid - xmax + width | |
], | |
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1], | |
) | |
return polygon, canvas, mask | |
def build_target( | |
self, | |
target: List[Dict[str, np.ndarray]], | |
output_shape: Tuple[int, int, int], | |
channels_last: bool = True, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | |
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()): | |
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.") | |
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()): | |
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") | |
input_dtype = next(iter(target[0].values())).dtype if len(target) > 0 else np.float32 | |
h: int | |
w: int | |
if channels_last: | |
h, w, num_classes = output_shape | |
else: | |
num_classes, h, w = output_shape | |
target_shape = (len(target), num_classes, h, w) | |
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8) | |
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool) | |
thresh_target: np.ndarray = np.zeros(target_shape, dtype=np.float32) | |
thresh_mask: np.ndarray = np.zeros(target_shape, dtype=np.uint8) | |
for idx, tgt in enumerate(target): | |
for class_idx, _tgt in enumerate(tgt.values()): | |
# Draw each polygon on gt | |
if _tgt.shape[0] == 0: | |
# Empty image, full masked | |
seg_mask[idx, class_idx] = False | |
# Absolute bounding boxes | |
abs_boxes = _tgt.copy() | |
if abs_boxes.ndim == 3: | |
abs_boxes[:, :, 0] *= w | |
abs_boxes[:, :, 1] *= h | |
polys = abs_boxes | |
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1) | |
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32) | |
else: | |
abs_boxes[:, [0, 2]] *= w | |
abs_boxes[:, [1, 3]] *= h | |
abs_boxes = abs_boxes.round().astype(np.int32) | |
polys = np.stack( | |
[ | |
abs_boxes[:, [0, 1]], | |
abs_boxes[:, [0, 3]], | |
abs_boxes[:, [2, 3]], | |
abs_boxes[:, [2, 1]], | |
], | |
axis=1, | |
) | |
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1]) | |
for poly, box, box_size in zip(polys, abs_boxes, boxes_size): | |
# Mask boxes that are too small | |
if box_size < self.min_size_box: | |
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | |
continue | |
# Negative shrink for gt, as described in paper | |
polygon = Polygon(poly) | |
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length | |
subject = [tuple(coor) for coor in poly] | |
padding = pyclipper.PyclipperOffset() | |
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | |
shrunken = padding.Execute(-distance) | |
# Draw polygon on gt if it is valid | |
if len(shrunken) == 0: | |
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | |
continue | |
shrunken = np.array(shrunken[0]).reshape(-1, 2) | |
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid: | |
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | |
continue | |
cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload] | |
# Draw on both thresh map and thresh mask | |
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map( | |
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] | |
) | |
if channels_last: | |
seg_target = seg_target.transpose((0, 2, 3, 1)) | |
seg_mask = seg_mask.transpose((0, 2, 3, 1)) | |
thresh_target = thresh_target.transpose((0, 2, 3, 1)) | |
thresh_mask = thresh_mask.transpose((0, 2, 3, 1)) | |
thresh_target = thresh_target.astype(input_dtype) * (self.thresh_max - self.thresh_min) + self.thresh_min | |
seg_target = seg_target.astype(input_dtype) | |
seg_mask = seg_mask.astype(bool) | |
thresh_target = thresh_target.astype(input_dtype) | |
thresh_mask = thresh_mask.astype(bool) | |
return seg_target, seg_mask, thresh_target, thresh_mask | |