adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
from typing import Dict, List, Tuple, Union
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
from ..core import DetectionPostProcessor
__all__ = ["DBPostProcessor"]
class DBPostProcessor(DetectionPostProcessor):
"""Implements a post processor for DBNet adapted from the implementation of `xuannianz
<https://github.com/xuannianz/DifferentiableBinarization>`_.
Args:
----
unclip ratio: ratio used to unshrink polygons
min_size_box: minimal length (pix) to keep a box
max_candidates: maximum boxes to consider in a single page
box_thresh: minimal objectness score to consider a box
bin_thresh: threshold used to binzarized p_map at inference time
"""
def __init__(
self,
box_thresh: float = 0.1,
bin_thresh: float = 0.3,
assume_straight_pages: bool = True,
) -> None:
super().__init__(box_thresh, bin_thresh, assume_straight_pages)
self.unclip_ratio = 1.5
def polygon_to_box(
self,
points: np.ndarray,
) -> np.ndarray:
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon
Args:
----
points: The first parameter.
Returns:
-------
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle)
"""
if not self.assume_straight_pages:
# Compute the rectangle polygon enclosing the raw polygon
rect = cv2.minAreaRect(points)
points = cv2.boxPoints(rect)
# Add 1 pixel to correct cv2 approx
area = (rect[1][0] + 1) * (1 + rect[1][1])
length = 2 * (rect[1][0] + rect[1][1]) + 2
else:
poly = Polygon(points)
area = poly.area
length = poly.length
distance = area * self.unclip_ratio / length # compute distance to expand polygon
offset = pyclipper.PyclipperOffset()
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
_points = offset.Execute(distance)
# Take biggest stack of points
idx = 0
if len(_points) > 1:
max_size = 0
for _idx, p in enumerate(_points):
if len(p) > max_size:
idx = _idx
max_size = len(p)
# We ensure that _points can be correctly casted to a ndarray
_points = [_points[idx]]
expanded_points: np.ndarray = np.asarray(_points) # expand polygon
if len(expanded_points) < 1:
return None # type: ignore[return-value]
return (
cv2.boundingRect(expanded_points) # type: ignore[return-value]
if self.assume_straight_pages
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
)
def bitmap_to_boxes(
self,
pred: np.ndarray,
bitmap: np.ndarray,
) -> np.ndarray:
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes
Args:
----
pred: Pred map from differentiable binarization output
bitmap: Bitmap map computed from pred (binarized)
angle_tol: Comparison tolerance of the angle with the median angle across the page
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop
Returns:
-------
np tensor boxes for the bitmap, each box is a 5-element list
containing x, y, w, h, score for the box
"""
height, width = bitmap.shape[:2]
min_size_box = 2
boxes: List[Union[np.ndarray, List[float]]] = []
# get contours from connected components on the bitmap
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
# Check whether smallest enclosing bounding box is not too small
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box):
continue
# Compute objectness
if self.assume_straight_pages:
x, y, w, h = cv2.boundingRect(contour)
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]])
score = self.box_score(pred, points, assume_straight_pages=True)
else:
score = self.box_score(pred, contour, assume_straight_pages=False)
if score < self.box_thresh: # remove polygons with a weak objectness
continue
if self.assume_straight_pages:
_box = self.polygon_to_box(points)
else:
_box = self.polygon_to_box(np.squeeze(contour))
# Remove too small boxes
if self.assume_straight_pages:
if _box is None or _box[2] < min_size_box or _box[3] < min_size_box:
continue
elif np.linalg.norm(_box[2, :] - _box[0, :], axis=-1) < min_size_box:
continue
if self.assume_straight_pages:
x, y, w, h = _box
# compute relative polygon to get rid of img shape
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height
boxes.append([xmin, ymin, xmax, ymax, score])
else:
# compute relative box to get rid of img shape, in that case _box is a 4pt polygon
if not isinstance(_box, np.ndarray) and _box.shape == (4, 2):
raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)")
_box[:, 0] /= width
_box[:, 1] /= height
boxes.append(_box)
if not self.assume_straight_pages:
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype)
else:
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
class _DBNet:
"""DBNet as described in `"Real-time Scene Text Detection with Differentiable Binarization"
<https://arxiv.org/pdf/1911.08947.pdf>`_.
Args:
----
feature extractor: the backbone serving as feature extractor
fpn_channels: number of channels each extracted feature maps is mapped to
"""
shrink_ratio = 0.4
thresh_min = 0.3
thresh_max = 0.7
min_size_box = 3
assume_straight_pages: bool = True
@staticmethod
def compute_distance(
xs: np.ndarray,
ys: np.ndarray,
a: np.ndarray,
b: np.ndarray,
eps: float = 1e-6,
) -> float:
"""Compute the distance for each point of the map (xs, ys) to the (a, b) segment
Args:
----
xs : map of x coordinates (height, width)
ys : map of y coordinates (height, width)
a: first point defining the [ab] segment
b: second point defining the [ab] segment
eps: epsilon to avoid division by zero
Returns:
-------
The computed distance
"""
square_dist_1 = np.square(xs - a[0]) + np.square(ys - a[1])
square_dist_2 = np.square(xs - b[0]) + np.square(ys - b[1])
square_dist = np.square(a[0] - b[0]) + np.square(a[1] - b[1])
cosin = (square_dist - square_dist_1 - square_dist_2) / (2 * np.sqrt(square_dist_1 * square_dist_2) + eps)
cosin = np.clip(cosin, -1.0, 1.0)
square_sin = 1 - np.square(cosin)
square_sin = np.nan_to_num(square_sin)
result = np.sqrt(square_dist_1 * square_dist_2 * square_sin / square_dist + eps)
result[cosin < 0] = np.sqrt(np.fmin(square_dist_1, square_dist_2))[cosin < 0]
return result
def draw_thresh_map(
self,
polygon: np.ndarray,
canvas: np.ndarray,
mask: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Draw a polygon treshold map on a canvas, as described in the DB paper
Args:
----
polygon : array of coord., to draw the boundary of the polygon
canvas : threshold map to fill with polygons
mask : mask for training on threshold polygons
"""
if polygon.ndim != 2 or polygon.shape[1] != 2:
raise AttributeError("polygon should be a 2 dimensional array of coords")
# Augment polygon by shrink_ratio
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(coor) for coor in polygon] # Get coord as list of tuples
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0])
# Fill the mask with 1 on the new padded polygon
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # type: ignore[call-overload]
# Get min/max to recover polygon after distance computation
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
# Get absolute polygon for distance computation
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
# Get absolute padded polygon
xs: np.ndarray = np.broadcast_to(np.linspace(0, width - 1, num=width).reshape(1, width), (height, width))
ys: np.ndarray = np.broadcast_to(np.linspace(0, height - 1, num=height).reshape(height, 1), (height, width))
# Compute distance map to fill the padded polygon
distance_map = np.zeros((polygon.shape[0], height, width), dtype=polygon.dtype)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
absolute_distance = self.compute_distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = np.min(distance_map, axis=0)
# Clip the padded polygon inside the canvas
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
# Fill the canvas with the distances computed inside the valid padded polygon
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1] = np.fmax(
1
- distance_map[
ymin_valid - ymin : ymax_valid - ymax + height, xmin_valid - xmin : xmax_valid - xmax + width
],
canvas[ymin_valid : ymax_valid + 1, xmin_valid : xmax_valid + 1],
)
return polygon, canvas, mask
def build_target(
self,
target: List[Dict[str, np.ndarray]],
output_shape: Tuple[int, int, int],
channels_last: bool = True,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()):
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.")
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()):
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.")
input_dtype = next(iter(target[0].values())).dtype if len(target) > 0 else np.float32
h: int
w: int
if channels_last:
h, w, num_classes = output_shape
else:
num_classes, h, w = output_shape
target_shape = (len(target), num_classes, h, w)
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool)
thresh_target: np.ndarray = np.zeros(target_shape, dtype=np.float32)
thresh_mask: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
for idx, tgt in enumerate(target):
for class_idx, _tgt in enumerate(tgt.values()):
# Draw each polygon on gt
if _tgt.shape[0] == 0:
# Empty image, full masked
seg_mask[idx, class_idx] = False
# Absolute bounding boxes
abs_boxes = _tgt.copy()
if abs_boxes.ndim == 3:
abs_boxes[:, :, 0] *= w
abs_boxes[:, :, 1] *= h
polys = abs_boxes
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1)
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32)
else:
abs_boxes[:, [0, 2]] *= w
abs_boxes[:, [1, 3]] *= h
abs_boxes = abs_boxes.round().astype(np.int32)
polys = np.stack(
[
abs_boxes[:, [0, 1]],
abs_boxes[:, [0, 3]],
abs_boxes[:, [2, 3]],
abs_boxes[:, [2, 1]],
],
axis=1,
)
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1])
for poly, box, box_size in zip(polys, abs_boxes, boxes_size):
# Mask boxes that are too small
if box_size < self.min_size_box:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
# Negative shrink for gt, as described in paper
polygon = Polygon(poly)
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length
subject = [tuple(coor) for coor in poly]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
shrunken = padding.Execute(-distance)
# Draw polygon on gt if it is valid
if len(shrunken) == 0:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
shrunken = np.array(shrunken[0]).reshape(-1, 2)
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload]
# Draw on both thresh map and thresh mask
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map(
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx]
)
if channels_last:
seg_target = seg_target.transpose((0, 2, 3, 1))
seg_mask = seg_mask.transpose((0, 2, 3, 1))
thresh_target = thresh_target.transpose((0, 2, 3, 1))
thresh_mask = thresh_mask.transpose((0, 2, 3, 1))
thresh_target = thresh_target.astype(input_dtype) * (self.thresh_max - self.thresh_min) + self.thresh_min
seg_target = seg_target.astype(input_dtype)
seg_mask = seg_mask.astype(bool)
thresh_target = thresh_target.astype(input_dtype)
thresh_mask = thresh_mask.astype(bool)
return seg_target, seg_mask, thresh_target, thresh_mask