Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torchvision.models._utils import IntermediateLayerGetter | |
from doctr.file_utils import CLASS_NAME | |
from ...classification import textnet_base, textnet_small, textnet_tiny | |
from ...modules.layers import FASTConvLayer | |
from ...utils import _bf16_to_float32, load_pretrained_params | |
from .base import _FAST, FASTPostProcessor | |
__all__ = ["FAST", "fast_tiny", "fast_small", "fast_base", "reparameterize"] | |
default_cfgs: Dict[str, Dict[str, Any]] = { | |
"fast_tiny": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-1acac421.pt&src=0", | |
}, | |
"fast_small": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-10952cc1.pt&src=0", | |
}, | |
"fast_base": { | |
"input_shape": (3, 1024, 1024), | |
"mean": (0.798, 0.785, 0.772), | |
"std": (0.264, 0.2749, 0.287), | |
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-688a8b34.pt&src=0", | |
}, | |
} | |
class FastNeck(nn.Module): | |
"""Neck of the FAST architecture, composed of a series of 3x3 convolutions and upsampling layers. | |
Args: | |
---- | |
in_channels: number of input channels | |
out_channels: number of output channels | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int = 128, | |
) -> None: | |
super().__init__() | |
self.reduction = nn.ModuleList([ | |
FASTConvLayer(in_channels * scale, out_channels, kernel_size=3) for scale in [1, 2, 4, 8] | |
]) | |
def _upsample(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | |
return F.interpolate(x, size=y.shape[-2:], mode="bilinear") | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
f1, f2, f3, f4 = x | |
f1, f2, f3, f4 = [reduction(f) for reduction, f in zip(self.reduction, (f1, f2, f3, f4))] | |
f2, f3, f4 = [self._upsample(f, f1) for f in (f2, f3, f4)] | |
f = torch.cat((f1, f2, f3, f4), 1) | |
return f | |
class FastHead(nn.Sequential): | |
"""Head of the FAST architecture | |
Args: | |
---- | |
in_channels: number of input channels | |
num_classes: number of output classes | |
out_channels: number of output channels | |
dropout: dropout probability | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
num_classes: int, | |
out_channels: int = 128, | |
dropout: float = 0.1, | |
) -> None: | |
_layers: List[nn.Module] = [ | |
FASTConvLayer(in_channels, out_channels, kernel_size=3), | |
nn.Dropout(dropout), | |
nn.Conv2d(out_channels, num_classes, kernel_size=1, bias=False), | |
] | |
super().__init__(*_layers) | |
class FAST(_FAST, nn.Module): | |
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" | |
<https://arxiv.org/pdf/2111.02394.pdf>`_. | |
Args: | |
---- | |
feat extractor: the backbone serving as feature extractor | |
bin_thresh: threshold for binarization | |
box_thresh: minimal objectness score to consider a box | |
dropout_prob: dropout probability | |
pooling_size: size of the pooling layer | |
assume_straight_pages: if True, fit straight bounding boxes only | |
exportable: onnx exportable returns only logits | |
cfg: the configuration dict of the model | |
class_names: list of class names | |
""" | |
def __init__( | |
self, | |
feat_extractor: IntermediateLayerGetter, | |
bin_thresh: float = 0.1, | |
box_thresh: float = 0.1, | |
dropout_prob: float = 0.1, | |
pooling_size: int = 4, # different from paper performs better on close text-rich images | |
assume_straight_pages: bool = True, | |
exportable: bool = False, | |
cfg: Optional[Dict[str, Any]] = {}, | |
class_names: List[str] = [CLASS_NAME], | |
) -> None: | |
super().__init__() | |
self.class_names = class_names | |
num_classes: int = len(self.class_names) | |
self.cfg = cfg | |
self.exportable = exportable | |
self.assume_straight_pages = assume_straight_pages | |
self.feat_extractor = feat_extractor | |
# Identify the number of channels for the neck & head initialization | |
_is_training = self.feat_extractor.training | |
self.feat_extractor = self.feat_extractor.eval() | |
with torch.no_grad(): | |
out = self.feat_extractor(torch.zeros((1, 3, 32, 32))) | |
feat_out_channels = [v.shape[1] for _, v in out.items()] | |
if _is_training: | |
self.feat_extractor = self.feat_extractor.train() | |
# Initialize neck & head | |
self.neck = FastNeck(feat_out_channels[0], feat_out_channels[1]) | |
self.prob_head = FastHead(feat_out_channels[-1], num_classes, feat_out_channels[1], dropout_prob) | |
# NOTE: The post processing from the paper works not well for text-rich images | |
# so we use a modified version from DBNet | |
self.postprocessor = FASTPostProcessor( | |
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh | |
) | |
# Pooling layer as erosion reversal as described in the paper | |
self.pooling = nn.MaxPool2d(kernel_size=pooling_size // 2 + 1, stride=1, padding=(pooling_size // 2) // 2) | |
for n, m in self.named_modules(): | |
# Don't override the initialization of the backbone | |
if n.startswith("feat_extractor."): | |
continue | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu") | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1.0) | |
m.bias.data.zero_() | |
def forward( | |
self, | |
x: torch.Tensor, | |
target: Optional[List[np.ndarray]] = None, | |
return_model_output: bool = False, | |
return_preds: bool = False, | |
) -> Dict[str, torch.Tensor]: | |
# Extract feature maps at different stages | |
feats = self.feat_extractor(x) | |
feats = [feats[str(idx)] for idx in range(len(feats))] | |
# Pass through the Neck & Head & Upsample | |
feat_concat = self.neck(feats) | |
logits = F.interpolate(self.prob_head(feat_concat), size=x.shape[-2:], mode="bilinear") | |
out: Dict[str, Any] = {} | |
if self.exportable: | |
out["logits"] = logits | |
return out | |
if return_model_output or target is None or return_preds: | |
prob_map = _bf16_to_float32(torch.sigmoid(self.pooling(logits))) | |
if return_model_output: | |
out["out_map"] = prob_map | |
if target is None or return_preds: | |
# Post-process boxes (keep only text predictions) | |
out["preds"] = [ | |
dict(zip(self.class_names, preds)) | |
for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy()) | |
] | |
if target is not None: | |
loss = self.compute_loss(logits, target) | |
out["loss"] = loss | |
return out | |
def compute_loss( | |
self, | |
out_map: torch.Tensor, | |
target: List[np.ndarray], | |
eps: float = 1e-6, | |
) -> torch.Tensor: | |
"""Compute fast loss, 2 x Dice loss where the text kernel loss is scaled by 0.5. | |
Args: | |
---- | |
out_map: output feature map of the model of shape (N, num_classes, H, W) | |
target: list of dictionary where each dict has a `boxes` and a `flags` entry | |
eps: epsilon factor in dice loss | |
Returns: | |
------- | |
A loss tensor | |
""" | |
targets = self.build_target(target, out_map.shape[1:], False) # type: ignore[arg-type] | |
seg_target, seg_mask = torch.from_numpy(targets[0]), torch.from_numpy(targets[1]) | |
shrunken_kernel = torch.from_numpy(targets[2]).to(out_map.device) | |
seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device) | |
def ohem_sample(score: torch.Tensor, gt: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: | |
masks = [] | |
for class_idx in range(gt.shape[0]): | |
pos_num = int(torch.sum(gt[class_idx] > 0.5)) - int( | |
torch.sum((gt[class_idx] > 0.5) & (mask[class_idx] <= 0.5)) | |
) | |
neg_num = int(torch.sum(gt[class_idx] <= 0.5)) | |
neg_num = int(min(pos_num * 3, neg_num)) | |
if neg_num == 0 or pos_num == 0: | |
masks.append(mask[class_idx]) | |
continue | |
neg_score_sorted, _ = torch.sort(-score[class_idx][gt[class_idx] <= 0.5]) | |
threshold = -neg_score_sorted[neg_num - 1] | |
selected_mask = ((score[class_idx] >= threshold) | (gt[class_idx] > 0.5)) & (mask[class_idx] > 0.5) | |
masks.append(selected_mask) | |
# combine all masks to shape (len(masks), H, W) | |
return torch.stack(masks).unsqueeze(0).float() | |
if len(self.class_names) > 1: | |
kernels = torch.softmax(out_map, dim=1) | |
prob_map = torch.softmax(self.pooling(out_map), dim=1) | |
else: | |
kernels = torch.sigmoid(out_map) | |
prob_map = torch.sigmoid(self.pooling(out_map)) | |
# As described in the paper, we use the Dice loss for the text segmentation map and the Dice loss scaled by 0.5. | |
selected_masks = torch.cat( | |
[ohem_sample(score, gt, mask) for score, gt, mask in zip(prob_map, seg_target, seg_mask)], 0 | |
).float() | |
inter = (selected_masks * prob_map * seg_target).sum((0, 2, 3)) | |
cardinality = (selected_masks * (prob_map + seg_target)).sum((0, 2, 3)) | |
text_loss = (1 - 2 * inter / (cardinality + eps)).mean() * 0.5 | |
# As described in the paper, we use the Dice loss for the text kernel map. | |
selected_masks = seg_target * seg_mask | |
inter = (selected_masks * kernels * shrunken_kernel).sum((0, 2, 3)) # noqa | |
cardinality = (selected_masks * (kernels + shrunken_kernel)).sum((0, 2, 3)) # noqa | |
kernel_loss = (1 - 2 * inter / (cardinality + eps)).mean() | |
return text_loss + kernel_loss | |
def reparameterize(model: Union[FAST, nn.Module]) -> FAST: | |
"""Fuse batchnorm and conv layers and reparameterize the model | |
args: | |
---- | |
model: the FAST model to reparameterize | |
Returns: | |
------- | |
the reparameterized model | |
""" | |
last_conv = None | |
last_conv_name = None | |
for module in model.modules(): | |
if hasattr(module, "reparameterize_layer"): | |
module.reparameterize_layer() | |
for name, child in model.named_children(): | |
if isinstance(child, nn.BatchNorm2d): | |
# fuse batchnorm only if it is followed by a conv layer | |
if last_conv is None: | |
continue | |
conv_w = last_conv.weight | |
conv_b = last_conv.bias if last_conv.bias is not None else torch.zeros_like(child.running_mean) | |
factor = child.weight / torch.sqrt(child.running_var + child.eps) | |
last_conv.weight = nn.Parameter(conv_w * factor.reshape([last_conv.out_channels, 1, 1, 1])) | |
last_conv.bias = nn.Parameter((conv_b - child.running_mean) * factor + child.bias) | |
model._modules[last_conv_name] = last_conv | |
model._modules[name] = nn.Identity() | |
last_conv = None | |
elif isinstance(child, nn.Conv2d): | |
last_conv = child | |
last_conv_name = name | |
else: | |
reparameterize(child) | |
return model # type: ignore[return-value] | |
def _fast( | |
arch: str, | |
pretrained: bool, | |
backbone_fn: Callable[[bool], nn.Module], | |
feat_layers: List[str], | |
pretrained_backbone: bool = True, | |
ignore_keys: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> FAST: | |
pretrained_backbone = pretrained_backbone and not pretrained | |
# Build the feature extractor | |
feat_extractor = IntermediateLayerGetter( | |
backbone_fn(pretrained_backbone), | |
{layer_name: str(idx) for idx, layer_name in enumerate(feat_layers)}, | |
) | |
if not kwargs.get("class_names", None): | |
kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME]) | |
else: | |
kwargs["class_names"] = sorted(kwargs["class_names"]) | |
# Build the model | |
model = FAST(feat_extractor, cfg=default_cfgs[arch], **kwargs) | |
# Load pretrained parameters | |
if pretrained: | |
# The number of class_names is not the same as the number of classes in the pretrained model => | |
# remove the layer weights | |
_ignore_keys = ( | |
ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None | |
) | |
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys) | |
return model | |
def fast_tiny(pretrained: bool = False, **kwargs: Any) -> FAST: | |
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" | |
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a tiny TextNet backbone. | |
>>> import torch | |
>>> from doctr.models import fast_tiny | |
>>> model = fast_tiny(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _fast( | |
"fast_tiny", | |
pretrained, | |
textnet_tiny, | |
["3", "4", "5", "6"], | |
ignore_keys=["prob_head.2.weight"], | |
**kwargs, | |
) | |
def fast_small(pretrained: bool = False, **kwargs: Any) -> FAST: | |
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" | |
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a small TextNet backbone. | |
>>> import torch | |
>>> from doctr.models import fast_small | |
>>> model = fast_small(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _fast( | |
"fast_small", | |
pretrained, | |
textnet_small, | |
["3", "4", "5", "6"], | |
ignore_keys=["prob_head.2.weight"], | |
**kwargs, | |
) | |
def fast_base(pretrained: bool = False, **kwargs: Any) -> FAST: | |
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" | |
<https://arxiv.org/pdf/2111.02394.pdf>`_, using a base TextNet backbone. | |
>>> import torch | |
>>> from doctr.models import fast_base | |
>>> model = fast_base(pretrained=True) | |
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32) | |
>>> out = model(input_tensor) | |
Args: | |
---- | |
pretrained (bool): If True, returns a model pre-trained on our text detection dataset | |
**kwargs: keyword arguments of the DBNet architecture | |
Returns: | |
------- | |
text detection architecture | |
""" | |
return _fast( | |
"fast_base", | |
pretrained, | |
textnet_base, | |
["3", "4", "5", "6"], | |
ignore_keys=["prob_head.2.weight"], | |
**kwargs, | |
) | |