adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Tuple, Union
import cv2
import numpy as np
from doctr.utils.geometry import rotate_abs_geoms
__all__ = ["crop_boxes", "create_shadow_mask"]
def crop_boxes(
boxes: np.ndarray,
crop_box: Union[Tuple[int, int, int, int], Tuple[float, float, float, float]],
) -> np.ndarray:
"""Crop localization boxes
Args:
----
boxes: ndarray of shape (N, 4) in relative or abs coordinates
crop_box: box (xmin, ymin, xmax, ymax) to crop the image, in the same coord format that the boxes
Returns:
-------
the cropped boxes
"""
is_box_rel = boxes.max() <= 1
is_crop_rel = max(crop_box) <= 1
if is_box_rel ^ is_crop_rel:
raise AssertionError("both the boxes and the crop need to have the same coordinate convention")
xmin, ymin, xmax, ymax = crop_box
# Clip boxes & correct offset
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(xmin, xmax) - xmin
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(ymin, ymax) - ymin
# Rescale relative coords
if is_box_rel:
boxes[:, [0, 2]] /= xmax - xmin
boxes[:, [1, 3]] /= ymax - ymin
# Remove 0-sized boxes
is_valid = np.logical_and(boxes[:, 1] < boxes[:, 3], boxes[:, 0] < boxes[:, 2])
return boxes[is_valid]
def expand_line(line: np.ndarray, target_shape: Tuple[int, int]) -> Tuple[float, float]:
"""Expands a 2-point line, so that the first is on the edge. In other terms, we extend the line in
the same direction until we meet one of the edges.
Args:
----
line: array of shape (2, 2) of the point supposed to be on one edge, and the shadow tip.
target_shape: the desired mask shape
Returns:
-------
2D coordinates of the first point once we extended the line (on one of the edges)
"""
if any(coord == 0 or coord == size for coord, size in zip(line[0], target_shape[::-1])):
return line[0]
# Get the line equation
_tmp = line[1] - line[0]
_direction = _tmp > 0
_flat = _tmp == 0
# vertical case
if _tmp[0] == 0:
solutions = [
# y = 0
(line[0, 0], 0),
# y = bot
(line[0, 0], target_shape[0]),
]
# horizontal
elif _tmp[1] == 0:
solutions = [
# x = 0
(0, line[0, 1]),
# x = right
(target_shape[1], line[0, 1]),
]
else:
alpha = _tmp[1] / _tmp[0]
beta = line[1, 1] - alpha * line[1, 0]
# Solve it for edges
solutions = [
# x = 0
(0, beta),
# y = 0
(-beta / alpha, 0),
# x = right
(target_shape[1], alpha * target_shape[1] + beta),
# y = bot
((target_shape[0] - beta) / alpha, target_shape[0]),
]
for point in solutions:
# Skip points that are out of the final image
if any(val < 0 or val > size for val, size in zip(point, target_shape[::-1])):
continue
if all(
val == ref if _same else (val < ref if _dir else val > ref)
for val, ref, _dir, _same in zip(point, line[1], _direction, _flat)
):
return point
raise ValueError
def create_shadow_mask(
target_shape: Tuple[int, int],
min_base_width=0.3,
max_tip_width=0.5,
max_tip_height=0.3,
) -> np.ndarray:
"""Creates a random shadow mask
Args:
----
target_shape: the target shape (H, W)
min_base_width: the relative minimum shadow base width
max_tip_width: the relative maximum shadow tip width
max_tip_height: the relative maximum shadow tip height
Returns:
-------
a numpy ndarray of shape (H, W, 1) with values in the range [0, 1]
"""
# Default base is top
_params = np.random.rand(6)
base_width = min_base_width + (1 - min_base_width) * _params[0]
base_center = base_width / 2 + (1 - base_width) * _params[1]
# Ensure tip width is smaller for shadow consistency
tip_width = min(_params[2] * base_width * target_shape[0] / target_shape[1], max_tip_width)
tip_center = tip_width / 2 + (1 - tip_width) * _params[3]
tip_height = _params[4] * max_tip_height
tip_mid = tip_height / 2 + (1 - tip_height) * _params[5]
_order = tip_center < base_center
contour: np.ndarray = np.array(
[
[base_center - base_width / 2, 0],
[base_center + base_width / 2, 0],
[tip_center + tip_width / 2, tip_mid + tip_height / 2 if _order else tip_mid - tip_height / 2],
[tip_center - tip_width / 2, tip_mid - tip_height / 2 if _order else tip_mid + tip_height / 2],
],
dtype=np.float32,
)
# Convert to absolute coords
abs_contour: np.ndarray = (
np.stack(
(contour[:, 0] * target_shape[1], contour[:, 1] * target_shape[0]),
axis=-1,
)
.round()
.astype(np.int32)
)
# Direction
_params = np.random.rand(1)
rotated_contour = (
rotate_abs_geoms(
abs_contour[None, ...],
360 * _params[0],
target_shape,
expand=False,
)[0]
.round()
.astype(np.int32)
)
# Check approx quadrant
quad_idx = int(_params[0] / 0.25)
# Top-bot
if quad_idx % 2 == 0:
intensity_mask = np.repeat(np.arange(target_shape[0])[:, None], target_shape[1], axis=1) / (target_shape[0] - 1)
if quad_idx == 0:
intensity_mask = 1 - intensity_mask
# Left - right
else:
intensity_mask = np.repeat(np.arange(target_shape[1])[None, :], target_shape[0], axis=0) / (target_shape[1] - 1)
if quad_idx == 1:
intensity_mask = 1 - intensity_mask
# Expand base
final_contour = rotated_contour.copy()
final_contour[0] = expand_line(final_contour[[0, 3]], target_shape)
final_contour[1] = expand_line(final_contour[[1, 2]], target_shape)
# If both base are not on the same side, add a point
if not np.any(final_contour[0] == final_contour[1]):
corner_x = 0 if max(final_contour[0, 0], final_contour[1, 0]) < target_shape[1] else target_shape[1]
corner_y = 0 if max(final_contour[0, 1], final_contour[1, 1]) < target_shape[0] else target_shape[0]
corner: np.ndarray = np.array([corner_x, corner_y])
final_contour = np.concatenate((final_contour[:1], corner[None, ...], final_contour[1:]), axis=0)
# Direction & rotate
mask: np.ndarray = np.zeros((*target_shape, 1), dtype=np.uint8)
mask = cv2.fillPoly(mask, [final_contour], (255,), lineType=cv2.LINE_AA)[..., 0]
return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32) # type: ignore[operator]