adirathor07's picture
added doctr folder
153628e
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
from PIL.Image import Image
from torch.nn.functional import pad
from torchvision.transforms import functional as F
from torchvision.transforms import transforms as T
from ..functional.pytorch import random_shadow
__all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow", "RandomResize"]
class Resize(T.Resize):
"""Resize the input image to the given size"""
def __init__(
self,
size: Union[int, Tuple[int, int]],
interpolation=F.InterpolationMode.BILINEAR,
preserve_aspect_ratio: bool = False,
symmetric_pad: bool = False,
) -> None:
super().__init__(size, interpolation, antialias=True)
self.preserve_aspect_ratio = preserve_aspect_ratio
self.symmetric_pad = symmetric_pad
if not isinstance(self.size, (int, tuple, list)):
raise AssertionError("size should be either a tuple, a list or an int")
def forward(
self,
img: torch.Tensor,
target: Optional[np.ndarray] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]:
if isinstance(self.size, int):
target_ratio = img.shape[-2] / img.shape[-1]
else:
target_ratio = self.size[0] / self.size[1]
actual_ratio = img.shape[-2] / img.shape[-1]
if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))):
# If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one
# We can use with the regular resize
if target is not None:
return super().forward(img), target
return super().forward(img)
else:
# Resize
if isinstance(self.size, (tuple, list)):
if actual_ratio > target_ratio:
tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1))
else:
tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1])
elif isinstance(self.size, int): # self.size is the longest side, infer the other
if img.shape[-2] <= img.shape[-1]:
tmp_size = (max(int(self.size * actual_ratio), 1), self.size)
else:
tmp_size = (self.size, max(int(self.size / actual_ratio), 1))
# Scale image
img = F.resize(img, tmp_size, self.interpolation, antialias=True)
raw_shape = img.shape[-2:]
if isinstance(self.size, (tuple, list)):
# Pad (inverted in pytorch)
_pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2])
if self.symmetric_pad:
half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2))
_pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1])
img = pad(img, _pad)
# In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio)
if target is not None:
if self.preserve_aspect_ratio:
# Get absolute coords
if target.shape[1:] == (4,):
if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
if np.max(target) <= 1:
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1]
target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2]
else:
target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1]
target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2]
elif target.shape[1:] == (4, 2):
if isinstance(self.size, (tuple, list)) and self.symmetric_pad:
if np.max(target) <= 1:
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2]
target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1]
target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2]
else:
target[..., 0] *= raw_shape[-1] / img.shape[-1]
target[..., 1] *= raw_shape[-2] / img.shape[-2]
else:
raise AssertionError
return img, target
return img
def __repr__(self) -> str:
interpolate_str = self.interpolation.value
_repr = f"output_size={self.size}, interpolation='{interpolate_str}'"
if self.preserve_aspect_ratio:
_repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}"
return f"{self.__class__.__name__}({_repr})"
class GaussianNoise(torch.nn.Module):
"""Adds Gaussian Noise to the input tensor
>>> import torch
>>> from doctr.transforms import GaussianNoise
>>> transfo = GaussianNoise(0., 1.)
>>> out = transfo(torch.rand((3, 224, 224)))
Args:
----
mean : mean of the gaussian distribution
std : std of the gaussian distribution
"""
def __init__(self, mean: float = 0.0, std: float = 1.0) -> None:
super().__init__()
self.std = std
self.mean = mean
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Reshape the distribution
noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std
if x.dtype == torch.uint8:
return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8)
else:
return (x + noise.to(dtype=x.dtype)).clamp(0, 1)
def extra_repr(self) -> str:
return f"mean={self.mean}, std={self.std}"
class ChannelShuffle(torch.nn.Module):
"""Randomly shuffle channel order of a given image"""
def __init__(self):
super().__init__()
def forward(self, img: torch.Tensor) -> torch.Tensor:
# Get a random order
chan_order = torch.rand(img.shape[0]).argsort()
return img[chan_order]
class RandomHorizontalFlip(T.RandomHorizontalFlip):
"""Randomly flip the input image horizontally"""
def forward(
self, img: Union[torch.Tensor, Image], target: np.ndarray
) -> Tuple[Union[torch.Tensor, Image], np.ndarray]:
if torch.rand(1) < self.p:
_img = F.hflip(img)
_target = target.copy()
# Changing the relative bbox coordinates
if target.shape[1:] == (4,):
_target[:, ::2] = 1 - target[:, [2, 0]]
else:
_target[..., 0] = 1 - target[..., 0]
return _img, _target
return img, target
class RandomShadow(torch.nn.Module):
"""Adds random shade to the input image
>>> import torch
>>> from doctr.transforms import RandomShadow
>>> transfo = RandomShadow((0., 1.))
>>> out = transfo(torch.rand((3, 64, 64)))
Args:
----
opacity_range : minimum and maximum opacity of the shade
"""
def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None:
super().__init__()
self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8)
def __call__(self, x: torch.Tensor) -> torch.Tensor:
# Reshape the distribution
try:
if x.dtype == torch.uint8:
return (
(
255
* random_shadow(
x.to(dtype=torch.float32) / 255,
self.opacity_range,
)
)
.round()
.clip(0, 255)
.to(dtype=torch.uint8)
)
else:
return random_shadow(x, self.opacity_range).clip(0, 1)
except ValueError:
return x
def extra_repr(self) -> str:
return f"opacity_range={self.opacity_range}"
class RandomResize(torch.nn.Module):
"""Randomly resize the input image and align corresponding targets
>>> import torch
>>> from doctr.transforms import RandomResize
>>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5)
>>> out = transfo(torch.rand((3, 64, 64)))
Args:
----
scale_range: range of the resizing factor for width and height (independently)
preserve_aspect_ratio: whether to preserve the aspect ratio of the image,
given a float value, the aspect ratio will be preserved with this probability
symmetric_pad: whether to symmetrically pad the image,
given a float value, the symmetric padding will be applied with this probability
p: probability to apply the transformation
"""
def __init__(
self,
scale_range: Tuple[float, float] = (0.3, 0.9),
preserve_aspect_ratio: Union[bool, float] = False,
symmetric_pad: Union[bool, float] = False,
p: float = 0.5,
) -> None:
super().__init__()
self.scale_range = scale_range
self.preserve_aspect_ratio = preserve_aspect_ratio
self.symmetric_pad = symmetric_pad
self.p = p
self._resize = Resize
def forward(self, img: torch.Tensor, target: np.ndarray) -> Tuple[torch.Tensor, np.ndarray]:
if torch.rand(1) < self.p:
scale_h = np.random.uniform(*self.scale_range)
scale_w = np.random.uniform(*self.scale_range)
new_size = (int(img.shape[-2] * scale_h), int(img.shape[-1] * scale_w))
_img, _target = self._resize(
new_size,
preserve_aspect_ratio=self.preserve_aspect_ratio
if isinstance(self.preserve_aspect_ratio, bool)
else bool(torch.rand(1) <= self.symmetric_pad),
symmetric_pad=self.symmetric_pad
if isinstance(self.symmetric_pad, bool)
else bool(torch.rand(1) <= self.symmetric_pad),
)(img, target)
return _img, _target
return img, target
def extra_repr(self) -> str:
return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501