Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import math | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from PIL.Image import Image | |
from torch.nn.functional import pad | |
from torchvision.transforms import functional as F | |
from torchvision.transforms import transforms as T | |
from ..functional.pytorch import random_shadow | |
__all__ = ["Resize", "GaussianNoise", "ChannelShuffle", "RandomHorizontalFlip", "RandomShadow", "RandomResize"] | |
class Resize(T.Resize): | |
"""Resize the input image to the given size""" | |
def __init__( | |
self, | |
size: Union[int, Tuple[int, int]], | |
interpolation=F.InterpolationMode.BILINEAR, | |
preserve_aspect_ratio: bool = False, | |
symmetric_pad: bool = False, | |
) -> None: | |
super().__init__(size, interpolation, antialias=True) | |
self.preserve_aspect_ratio = preserve_aspect_ratio | |
self.symmetric_pad = symmetric_pad | |
if not isinstance(self.size, (int, tuple, list)): | |
raise AssertionError("size should be either a tuple, a list or an int") | |
def forward( | |
self, | |
img: torch.Tensor, | |
target: Optional[np.ndarray] = None, | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, np.ndarray]]: | |
if isinstance(self.size, int): | |
target_ratio = img.shape[-2] / img.shape[-1] | |
else: | |
target_ratio = self.size[0] / self.size[1] | |
actual_ratio = img.shape[-2] / img.shape[-1] | |
if not self.preserve_aspect_ratio or (target_ratio == actual_ratio and (isinstance(self.size, (tuple, list)))): | |
# If we don't preserve the aspect ratio or the wanted aspect ratio is the same than the original one | |
# We can use with the regular resize | |
if target is not None: | |
return super().forward(img), target | |
return super().forward(img) | |
else: | |
# Resize | |
if isinstance(self.size, (tuple, list)): | |
if actual_ratio > target_ratio: | |
tmp_size = (self.size[0], max(int(self.size[0] / actual_ratio), 1)) | |
else: | |
tmp_size = (max(int(self.size[1] * actual_ratio), 1), self.size[1]) | |
elif isinstance(self.size, int): # self.size is the longest side, infer the other | |
if img.shape[-2] <= img.shape[-1]: | |
tmp_size = (max(int(self.size * actual_ratio), 1), self.size) | |
else: | |
tmp_size = (self.size, max(int(self.size / actual_ratio), 1)) | |
# Scale image | |
img = F.resize(img, tmp_size, self.interpolation, antialias=True) | |
raw_shape = img.shape[-2:] | |
if isinstance(self.size, (tuple, list)): | |
# Pad (inverted in pytorch) | |
_pad = (0, self.size[1] - img.shape[-1], 0, self.size[0] - img.shape[-2]) | |
if self.symmetric_pad: | |
half_pad = (math.ceil(_pad[1] / 2), math.ceil(_pad[3] / 2)) | |
_pad = (half_pad[0], _pad[1] - half_pad[0], half_pad[1], _pad[3] - half_pad[1]) | |
img = pad(img, _pad) | |
# In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) | |
if target is not None: | |
if self.preserve_aspect_ratio: | |
# Get absolute coords | |
if target.shape[1:] == (4,): | |
if isinstance(self.size, (tuple, list)) and self.symmetric_pad: | |
if np.max(target) <= 1: | |
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] | |
target[:, [0, 2]] = offset[0] + target[:, [0, 2]] * raw_shape[-1] / img.shape[-1] | |
target[:, [1, 3]] = offset[1] + target[:, [1, 3]] * raw_shape[-2] / img.shape[-2] | |
else: | |
target[:, [0, 2]] *= raw_shape[-1] / img.shape[-1] | |
target[:, [1, 3]] *= raw_shape[-2] / img.shape[-2] | |
elif target.shape[1:] == (4, 2): | |
if isinstance(self.size, (tuple, list)) and self.symmetric_pad: | |
if np.max(target) <= 1: | |
offset = half_pad[0] / img.shape[-1], half_pad[1] / img.shape[-2] | |
target[..., 0] = offset[0] + target[..., 0] * raw_shape[-1] / img.shape[-1] | |
target[..., 1] = offset[1] + target[..., 1] * raw_shape[-2] / img.shape[-2] | |
else: | |
target[..., 0] *= raw_shape[-1] / img.shape[-1] | |
target[..., 1] *= raw_shape[-2] / img.shape[-2] | |
else: | |
raise AssertionError | |
return img, target | |
return img | |
def __repr__(self) -> str: | |
interpolate_str = self.interpolation.value | |
_repr = f"output_size={self.size}, interpolation='{interpolate_str}'" | |
if self.preserve_aspect_ratio: | |
_repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" | |
return f"{self.__class__.__name__}({_repr})" | |
class GaussianNoise(torch.nn.Module): | |
"""Adds Gaussian Noise to the input tensor | |
>>> import torch | |
>>> from doctr.transforms import GaussianNoise | |
>>> transfo = GaussianNoise(0., 1.) | |
>>> out = transfo(torch.rand((3, 224, 224))) | |
Args: | |
---- | |
mean : mean of the gaussian distribution | |
std : std of the gaussian distribution | |
""" | |
def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: | |
super().__init__() | |
self.std = std | |
self.mean = mean | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# Reshape the distribution | |
noise = self.mean + 2 * self.std * torch.rand(x.shape, device=x.device) - self.std | |
if x.dtype == torch.uint8: | |
return (x + 255 * noise).round().clamp(0, 255).to(dtype=torch.uint8) | |
else: | |
return (x + noise.to(dtype=x.dtype)).clamp(0, 1) | |
def extra_repr(self) -> str: | |
return f"mean={self.mean}, std={self.std}" | |
class ChannelShuffle(torch.nn.Module): | |
"""Randomly shuffle channel order of a given image""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, img: torch.Tensor) -> torch.Tensor: | |
# Get a random order | |
chan_order = torch.rand(img.shape[0]).argsort() | |
return img[chan_order] | |
class RandomHorizontalFlip(T.RandomHorizontalFlip): | |
"""Randomly flip the input image horizontally""" | |
def forward( | |
self, img: Union[torch.Tensor, Image], target: np.ndarray | |
) -> Tuple[Union[torch.Tensor, Image], np.ndarray]: | |
if torch.rand(1) < self.p: | |
_img = F.hflip(img) | |
_target = target.copy() | |
# Changing the relative bbox coordinates | |
if target.shape[1:] == (4,): | |
_target[:, ::2] = 1 - target[:, [2, 0]] | |
else: | |
_target[..., 0] = 1 - target[..., 0] | |
return _img, _target | |
return img, target | |
class RandomShadow(torch.nn.Module): | |
"""Adds random shade to the input image | |
>>> import torch | |
>>> from doctr.transforms import RandomShadow | |
>>> transfo = RandomShadow((0., 1.)) | |
>>> out = transfo(torch.rand((3, 64, 64))) | |
Args: | |
---- | |
opacity_range : minimum and maximum opacity of the shade | |
""" | |
def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: | |
super().__init__() | |
self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) | |
def __call__(self, x: torch.Tensor) -> torch.Tensor: | |
# Reshape the distribution | |
try: | |
if x.dtype == torch.uint8: | |
return ( | |
( | |
255 | |
* random_shadow( | |
x.to(dtype=torch.float32) / 255, | |
self.opacity_range, | |
) | |
) | |
.round() | |
.clip(0, 255) | |
.to(dtype=torch.uint8) | |
) | |
else: | |
return random_shadow(x, self.opacity_range).clip(0, 1) | |
except ValueError: | |
return x | |
def extra_repr(self) -> str: | |
return f"opacity_range={self.opacity_range}" | |
class RandomResize(torch.nn.Module): | |
"""Randomly resize the input image and align corresponding targets | |
>>> import torch | |
>>> from doctr.transforms import RandomResize | |
>>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5) | |
>>> out = transfo(torch.rand((3, 64, 64))) | |
Args: | |
---- | |
scale_range: range of the resizing factor for width and height (independently) | |
preserve_aspect_ratio: whether to preserve the aspect ratio of the image, | |
given a float value, the aspect ratio will be preserved with this probability | |
symmetric_pad: whether to symmetrically pad the image, | |
given a float value, the symmetric padding will be applied with this probability | |
p: probability to apply the transformation | |
""" | |
def __init__( | |
self, | |
scale_range: Tuple[float, float] = (0.3, 0.9), | |
preserve_aspect_ratio: Union[bool, float] = False, | |
symmetric_pad: Union[bool, float] = False, | |
p: float = 0.5, | |
) -> None: | |
super().__init__() | |
self.scale_range = scale_range | |
self.preserve_aspect_ratio = preserve_aspect_ratio | |
self.symmetric_pad = symmetric_pad | |
self.p = p | |
self._resize = Resize | |
def forward(self, img: torch.Tensor, target: np.ndarray) -> Tuple[torch.Tensor, np.ndarray]: | |
if torch.rand(1) < self.p: | |
scale_h = np.random.uniform(*self.scale_range) | |
scale_w = np.random.uniform(*self.scale_range) | |
new_size = (int(img.shape[-2] * scale_h), int(img.shape[-1] * scale_w)) | |
_img, _target = self._resize( | |
new_size, | |
preserve_aspect_ratio=self.preserve_aspect_ratio | |
if isinstance(self.preserve_aspect_ratio, bool) | |
else bool(torch.rand(1) <= self.symmetric_pad), | |
symmetric_pad=self.symmetric_pad | |
if isinstance(self.symmetric_pad, bool) | |
else bool(torch.rand(1) <= self.symmetric_pad), | |
)(img, target) | |
return _img, _target | |
return img, target | |
def extra_repr(self) -> str: | |
return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501 | |