Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
import random | |
from typing import Any, Callable, Iterable, List, Optional, Tuple, Union | |
import numpy as np | |
import tensorflow as tf | |
from doctr.utils.repr import NestedObject | |
from ..functional.tensorflow import _gaussian_filter, random_shadow | |
__all__ = [ | |
"Compose", | |
"Resize", | |
"Normalize", | |
"LambdaTransformation", | |
"ToGray", | |
"RandomBrightness", | |
"RandomContrast", | |
"RandomSaturation", | |
"RandomHue", | |
"RandomGamma", | |
"RandomJpegQuality", | |
"GaussianBlur", | |
"ChannelShuffle", | |
"GaussianNoise", | |
"RandomHorizontalFlip", | |
"RandomShadow", | |
"RandomResize", | |
] | |
class Compose(NestedObject): | |
"""Implements a wrapper that will apply transformations sequentially | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import Compose, Resize | |
>>> transfos = Compose([Resize((32, 32))]) | |
>>> out = transfos(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
transforms: list of transformation modules | |
""" | |
_children_names: List[str] = ["transforms"] | |
def __init__(self, transforms: List[Callable[[Any], Any]]) -> None: | |
self.transforms = transforms | |
def __call__(self, x: Any) -> Any: | |
for t in self.transforms: | |
x = t(x) | |
return x | |
class Resize(NestedObject): | |
"""Resizes a tensor to a target size | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import Resize | |
>>> transfo = Resize((32, 32)) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
output_size: expected output size | |
method: interpolation method | |
preserve_aspect_ratio: if `True`, preserve aspect ratio and pad the rest with zeros | |
symmetric_pad: if `True` while preserving aspect ratio, the padding will be done symmetrically | |
""" | |
def __init__( | |
self, | |
output_size: Union[int, Tuple[int, int]], | |
method: str = "bilinear", | |
preserve_aspect_ratio: bool = False, | |
symmetric_pad: bool = False, | |
) -> None: | |
self.output_size = output_size | |
self.method = method | |
self.preserve_aspect_ratio = preserve_aspect_ratio | |
self.symmetric_pad = symmetric_pad | |
self.antialias = True | |
if isinstance(self.output_size, int): | |
self.wanted_size = (self.output_size, self.output_size) | |
elif isinstance(self.output_size, (tuple, list)): | |
self.wanted_size = self.output_size | |
else: | |
raise AssertionError("Output size should be either a list, a tuple or an int") | |
def extra_repr(self) -> str: | |
_repr = f"output_size={self.output_size}, method='{self.method}'" | |
if self.preserve_aspect_ratio: | |
_repr += f", preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}" | |
return _repr | |
def __call__( | |
self, | |
img: tf.Tensor, | |
target: Optional[np.ndarray] = None, | |
) -> Union[tf.Tensor, Tuple[tf.Tensor, np.ndarray]]: | |
input_dtype = img.dtype | |
img = tf.image.resize(img, self.wanted_size, self.method, self.preserve_aspect_ratio, self.antialias) | |
# It will produce an un-padded resized image, with a side shorter than wanted if we preserve aspect ratio | |
raw_shape = img.shape[:2] | |
if self.preserve_aspect_ratio: | |
if isinstance(self.output_size, (tuple, list)): | |
# In that case we need to pad because we want to enforce both width and height | |
if not self.symmetric_pad: | |
offset = (0, 0) | |
elif self.output_size[0] == img.shape[0]: | |
offset = (0, int((self.output_size[1] - img.shape[1]) / 2)) | |
else: | |
offset = (int((self.output_size[0] - img.shape[0]) / 2), 0) | |
img = tf.image.pad_to_bounding_box(img, *offset, *self.output_size) | |
# In case boxes are provided, resize boxes if needed (for detection task if preserve aspect ratio) | |
if target is not None: | |
if self.preserve_aspect_ratio: | |
# Get absolute coords | |
if target.shape[1:] == (4,): | |
if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: | |
if np.max(target) <= 1: | |
offset = offset[0] / img.shape[0], offset[1] / img.shape[1] | |
target[:, [0, 2]] = offset[1] + target[:, [0, 2]] * raw_shape[1] / img.shape[1] | |
target[:, [1, 3]] = offset[0] + target[:, [1, 3]] * raw_shape[0] / img.shape[0] | |
else: | |
target[:, [0, 2]] *= raw_shape[1] / img.shape[1] | |
target[:, [1, 3]] *= raw_shape[0] / img.shape[0] | |
elif target.shape[1:] == (4, 2): | |
if isinstance(self.output_size, (tuple, list)) and self.symmetric_pad: | |
if np.max(target) <= 1: | |
offset = offset[0] / img.shape[0], offset[1] / img.shape[1] | |
target[..., 0] = offset[1] + target[..., 0] * raw_shape[1] / img.shape[1] | |
target[..., 1] = offset[0] + target[..., 1] * raw_shape[0] / img.shape[0] | |
else: | |
target[..., 0] *= raw_shape[1] / img.shape[1] | |
target[..., 1] *= raw_shape[0] / img.shape[0] | |
else: | |
raise AssertionError | |
return tf.cast(img, dtype=input_dtype), target | |
return tf.cast(img, dtype=input_dtype) | |
class Normalize(NestedObject): | |
"""Normalize a tensor to a Gaussian distribution for each channel | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import Normalize | |
>>> transfo = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
mean: average value per channel | |
std: standard deviation per channel | |
""" | |
def __init__(self, mean: Tuple[float, float, float], std: Tuple[float, float, float]) -> None: | |
self.mean = tf.constant(mean) | |
self.std = tf.constant(std) | |
def extra_repr(self) -> str: | |
return f"mean={self.mean.numpy().tolist()}, std={self.std.numpy().tolist()}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
img -= tf.cast(self.mean, dtype=img.dtype) | |
img /= tf.cast(self.std, dtype=img.dtype) | |
return img | |
class LambdaTransformation(NestedObject): | |
"""Normalize a tensor to a Gaussian distribution for each channel | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import LambdaTransformation | |
>>> transfo = LambdaTransformation(lambda x: x/ 255.) | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
fn: the function to be applied to the input tensor | |
""" | |
def __init__(self, fn: Callable[[tf.Tensor], tf.Tensor]) -> None: | |
self.fn = fn | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return self.fn(img) | |
class ToGray(NestedObject): | |
"""Convert a RGB tensor (batch of images or image) to a 3-channels grayscale tensor | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import ToGray | |
>>> transfo = ToGray() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
""" | |
def __init__(self, num_output_channels: int = 1): | |
self.num_output_channels = num_output_channels | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
img = tf.image.rgb_to_grayscale(img) | |
return img if self.num_output_channels == 1 else tf.repeat(img, self.num_output_channels, axis=-1) | |
class RandomBrightness(NestedObject): | |
"""Randomly adjust brightness of a tensor (batch of images or image) by adding a delta | |
to all pixels | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomBrightness | |
>>> transfo = RandomBrightness() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] | |
p: probability to apply transformation | |
""" | |
def __init__(self, max_delta: float = 0.3) -> None: | |
self.max_delta = max_delta | |
def extra_repr(self) -> str: | |
return f"max_delta={self.max_delta}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.image.random_brightness(img, max_delta=self.max_delta) | |
class RandomContrast(NestedObject): | |
"""Randomly adjust contrast of a tensor (batch of images or image) by adjusting | |
each pixel: (img - mean) * contrast_factor + mean. | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomContrast | |
>>> transfo = RandomContrast() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce contrast if factor<1) | |
""" | |
def __init__(self, delta: float = 0.3) -> None: | |
self.delta = delta | |
def extra_repr(self) -> str: | |
return f"delta={self.delta}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.image.random_contrast(img, lower=1 - self.delta, upper=1 / (1 - self.delta)) | |
class RandomSaturation(NestedObject): | |
"""Randomly adjust saturation of a tensor (batch of images or image) by converting to HSV and | |
increasing saturation by a factor. | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomSaturation | |
>>> transfo = RandomSaturation() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
delta: multiplicative factor is picked in [1-delta, 1+delta] (reduce saturation if factor<1) | |
""" | |
def __init__(self, delta: float = 0.5) -> None: | |
self.delta = delta | |
def extra_repr(self) -> str: | |
return f"delta={self.delta}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.image.random_saturation(img, lower=1 - self.delta, upper=1 + self.delta) | |
class RandomHue(NestedObject): | |
"""Randomly adjust hue of a tensor (batch of images or image) by converting to HSV and adding a delta | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomHue | |
>>> transfo = RandomHue() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
max_delta: offset to add to each pixel is randomly picked in [-max_delta, max_delta] | |
""" | |
def __init__(self, max_delta: float = 0.3) -> None: | |
self.max_delta = max_delta | |
def extra_repr(self) -> str: | |
return f"max_delta={self.max_delta}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.image.random_hue(img, max_delta=self.max_delta) | |
class RandomGamma(NestedObject): | |
"""randomly performs gamma correction for a tensor (batch of images or image) | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomGamma | |
>>> transfo = RandomGamma() | |
>>> out = transfo(tf.random.uniform(shape=[8, 64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
min_gamma: non-negative real number, lower bound for gamma param | |
max_gamma: non-negative real number, upper bound for gamma | |
min_gain: lower bound for constant multiplier | |
max_gain: upper bound for constant multiplier | |
""" | |
def __init__( | |
self, | |
min_gamma: float = 0.5, | |
max_gamma: float = 1.5, | |
min_gain: float = 0.8, | |
max_gain: float = 1.2, | |
) -> None: | |
self.min_gamma = min_gamma | |
self.max_gamma = max_gamma | |
self.min_gain = min_gain | |
self.max_gain = max_gain | |
def extra_repr(self) -> str: | |
return f"""gamma_range=({self.min_gamma}, {self.max_gamma}), | |
gain_range=({self.min_gain}, {self.max_gain})""" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
gamma = random.uniform(self.min_gamma, self.max_gamma) | |
gain = random.uniform(self.min_gain, self.max_gain) | |
return tf.image.adjust_gamma(img, gamma=gamma, gain=gain) | |
class RandomJpegQuality(NestedObject): | |
"""Randomly adjust jpeg quality of a 3 dimensional RGB image | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomJpegQuality | |
>>> transfo = RandomJpegQuality() | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
min_quality: int between [0, 100] | |
max_quality: int between [0, 100] | |
""" | |
def __init__(self, min_quality: int = 60, max_quality: int = 100) -> None: | |
self.min_quality = min_quality | |
self.max_quality = max_quality | |
def extra_repr(self) -> str: | |
return f"min_quality={self.min_quality}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.image.random_jpeg_quality(img, min_jpeg_quality=self.min_quality, max_jpeg_quality=self.max_quality) | |
class GaussianBlur(NestedObject): | |
"""Randomly adjust jpeg quality of a 3 dimensional RGB image | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import GaussianBlur | |
>>> transfo = GaussianBlur(3, (.1, 5)) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
kernel_shape: size of the blurring kernel | |
std: min and max value of the standard deviation | |
""" | |
def __init__(self, kernel_shape: Union[int, Iterable[int]], std: Tuple[float, float]) -> None: | |
self.kernel_shape = kernel_shape | |
self.std = std | |
def extra_repr(self) -> str: | |
return f"kernel_shape={self.kernel_shape}, std={self.std}" | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.squeeze( | |
_gaussian_filter( | |
img[tf.newaxis, ...], | |
kernel_size=self.kernel_shape, | |
sigma=random.uniform(self.std[0], self.std[1]), | |
mode="REFLECT", | |
), | |
axis=0, | |
) | |
class ChannelShuffle(NestedObject): | |
"""Randomly shuffle channel order of a given image""" | |
def __init__(self): | |
pass | |
def __call__(self, img: tf.Tensor) -> tf.Tensor: | |
return tf.transpose(tf.random.shuffle(tf.transpose(img, perm=[2, 0, 1])), perm=[1, 2, 0]) | |
class GaussianNoise(NestedObject): | |
"""Adds Gaussian Noise to the input tensor | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import GaussianNoise | |
>>> transfo = GaussianNoise(0., 1.) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
mean : mean of the gaussian distribution | |
std : std of the gaussian distribution | |
""" | |
def __init__(self, mean: float = 0.0, std: float = 1.0) -> None: | |
super().__init__() | |
self.std = std | |
self.mean = mean | |
def __call__(self, x: tf.Tensor) -> tf.Tensor: | |
# Reshape the distribution | |
noise = self.mean + 2 * self.std * tf.random.uniform(x.shape) - self.std | |
if x.dtype == tf.uint8: | |
return tf.cast( | |
tf.clip_by_value(tf.math.round(tf.cast(x, dtype=tf.float32) + 255 * noise), 0, 255), dtype=tf.uint8 | |
) | |
else: | |
return tf.cast(tf.clip_by_value(x + noise, 0, 1), dtype=x.dtype) | |
def extra_repr(self) -> str: | |
return f"mean={self.mean}, std={self.std}" | |
class RandomHorizontalFlip(NestedObject): | |
"""Adds random horizontal flip to the input tensor/np.ndarray | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomHorizontalFlip | |
>>> transfo = RandomHorizontalFlip(p=0.5) | |
>>> image = tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1) | |
>>> target = np.array([[0.1, 0.1, 0.4, 0.5] ], dtype= np.float32) | |
>>> out = transfo(image, target) | |
Args: | |
---- | |
p : probability of Horizontal Flip | |
""" | |
def __init__(self, p: float) -> None: | |
super().__init__() | |
self.p = p | |
def __call__(self, img: Union[tf.Tensor, np.ndarray], target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]: | |
if np.random.rand(1) <= self.p: | |
_img = tf.image.flip_left_right(img) | |
_target = target.copy() | |
# Changing the relative bbox coordinates | |
if target.shape[1:] == (4,): | |
_target[:, ::2] = 1 - target[:, [2, 0]] | |
else: | |
_target[..., 0] = 1 - target[..., 0] | |
return _img, _target | |
return img, target | |
class RandomShadow(NestedObject): | |
"""Adds random shade to the input image | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomShadow | |
>>> transfo = RandomShadow(0., 1.) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
opacity_range : minimum and maximum opacity of the shade | |
""" | |
def __init__(self, opacity_range: Optional[Tuple[float, float]] = None) -> None: | |
super().__init__() | |
self.opacity_range = opacity_range if isinstance(opacity_range, tuple) else (0.2, 0.8) | |
def __call__(self, x: tf.Tensor) -> tf.Tensor: | |
# Reshape the distribution | |
if x.dtype == tf.uint8: | |
return tf.cast( | |
tf.clip_by_value( | |
tf.math.round(255 * random_shadow(tf.cast(x, dtype=tf.float32) / 255, self.opacity_range)), | |
0, | |
255, | |
), | |
dtype=tf.uint8, | |
) | |
else: | |
return tf.clip_by_value(random_shadow(x, self.opacity_range), 0, 1) | |
def extra_repr(self) -> str: | |
return f"opacity_range={self.opacity_range}" | |
class RandomResize(NestedObject): | |
"""Randomly resize the input image and align corresponding targets | |
>>> import tensorflow as tf | |
>>> from doctr.transforms import RandomResize | |
>>> transfo = RandomResize((0.3, 0.9), preserve_aspect_ratio=True, symmetric_pad=True, p=0.5) | |
>>> out = transfo(tf.random.uniform(shape=[64, 64, 3], minval=0, maxval=1)) | |
Args: | |
---- | |
scale_range: range of the resizing factor for width and height (independently) | |
preserve_aspect_ratio: whether to preserve the aspect ratio of the image, | |
given a float value, the aspect ratio will be preserved with this probability | |
symmetric_pad: whether to symmetrically pad the image, | |
given a float value, the symmetric padding will be applied with this probability | |
p: probability to apply the transformation | |
""" | |
def __init__( | |
self, | |
scale_range: Tuple[float, float] = (0.3, 0.9), | |
preserve_aspect_ratio: Union[bool, float] = False, | |
symmetric_pad: Union[bool, float] = False, | |
p: float = 0.5, | |
): | |
super().__init__() | |
self.scale_range = scale_range | |
self.preserve_aspect_ratio = preserve_aspect_ratio | |
self.symmetric_pad = symmetric_pad | |
self.p = p | |
self._resize = Resize | |
def __call__(self, img: tf.Tensor, target: np.ndarray) -> Tuple[tf.Tensor, np.ndarray]: | |
if np.random.rand(1) <= self.p: | |
scale_h = random.uniform(*self.scale_range) | |
scale_w = random.uniform(*self.scale_range) | |
new_size = (int(img.shape[-3] * scale_h), int(img.shape[-2] * scale_w)) | |
_img, _target = self._resize( | |
new_size, | |
preserve_aspect_ratio=self.preserve_aspect_ratio | |
if isinstance(self.preserve_aspect_ratio, bool) | |
else bool(np.random.rand(1) <= self.symmetric_pad), | |
symmetric_pad=self.symmetric_pad | |
if isinstance(self.symmetric_pad, bool) | |
else bool(np.random.rand(1) <= self.symmetric_pad), | |
)(img, target) | |
return _img, _target | |
return img, target | |
def extra_repr(self) -> str: | |
return f"scale_range={self.scale_range}, preserve_aspect_ratio={self.preserve_aspect_ratio}, symmetric_pad={self.symmetric_pad}, p={self.p}" # noqa: E501 | |