Spaces:
Runtime error
Runtime error
# Copyright (C) 2021-2024, Mindee. | |
# This program is licensed under the Apache License 2.0. | |
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | |
from typing import Dict, List, Optional, Tuple | |
import numpy as np | |
from anyascii import anyascii | |
from scipy.optimize import linear_sum_assignment | |
from shapely.geometry import Polygon | |
__all__ = [ | |
"TextMatch", | |
"box_iou", | |
"polygon_iou", | |
"nms", | |
"LocalizationConfusion", | |
"OCRMetric", | |
"DetectionMetric", | |
] | |
def string_match(word1: str, word2: str) -> Tuple[bool, bool, bool, bool]: | |
"""Performs string comparison with multiple levels of tolerance | |
Args: | |
---- | |
word1: a string | |
word2: another string | |
Returns: | |
------- | |
a tuple with booleans specifying respectively whether the raw strings, their lower-case counterparts, their | |
anyascii counterparts and their lower-case anyascii counterparts match | |
""" | |
raw_match = word1 == word2 | |
caseless_match = word1.lower() == word2.lower() | |
anyascii_match = anyascii(word1) == anyascii(word2) | |
# Warning: the order is important here otherwise the pair ("EUR", "β¬") cannot be matched | |
unicase_match = anyascii(word1).lower() == anyascii(word2).lower() | |
return raw_match, caseless_match, anyascii_match, unicase_match | |
class TextMatch: | |
r"""Implements text match metric (word-level accuracy) for recognition task. | |
The raw aggregated metric is computed as follows: | |
.. math:: | |
\forall X, Y \in \mathcal{W}^N, | |
TextMatch(X, Y) = \frac{1}{N} \sum\limits_{i=1}^N f_{Y_i}(X_i) | |
with the indicator function :math:`f_{a}` defined as: | |
.. math:: | |
\forall a, x \in \mathcal{W}, | |
f_a(x) = \left\{ | |
\begin{array}{ll} | |
1 & \mbox{if } x = a \\ | |
0 & \mbox{otherwise.} | |
\end{array} | |
\right. | |
where :math:`\mathcal{W}` is the set of all possible character sequences, | |
:math:`N` is a strictly positive integer. | |
>>> from doctr.utils import TextMatch | |
>>> metric = TextMatch() | |
>>> metric.update(['Hello', 'world'], ['hello', 'world']) | |
>>> metric.summary() | |
""" | |
def __init__(self) -> None: | |
self.reset() | |
def update( | |
self, | |
gt: List[str], | |
pred: List[str], | |
) -> None: | |
"""Update the state of the metric with new predictions | |
Args: | |
---- | |
gt: list of groung-truth character sequences | |
pred: list of predicted character sequences | |
""" | |
if len(gt) != len(pred): | |
raise AssertionError("prediction size does not match with ground-truth labels size") | |
for gt_word, pred_word in zip(gt, pred): | |
_raw, _caseless, _anyascii, _unicase = string_match(gt_word, pred_word) | |
self.raw += int(_raw) | |
self.caseless += int(_caseless) | |
self.anyascii += int(_anyascii) | |
self.unicase += int(_unicase) | |
self.total += len(gt) | |
def summary(self) -> Dict[str, float]: | |
"""Computes the aggregated metrics | |
Returns | |
------- | |
a dictionary with the exact match score for the raw data, its lower-case counterpart, its anyascii | |
counterpart and its lower-case anyascii counterpart | |
""" | |
if self.total == 0: | |
raise AssertionError("you need to update the metric before getting the summary") | |
return dict( | |
raw=self.raw / self.total, | |
caseless=self.caseless / self.total, | |
anyascii=self.anyascii / self.total, | |
unicase=self.unicase / self.total, | |
) | |
def reset(self) -> None: | |
self.raw = 0 | |
self.caseless = 0 | |
self.anyascii = 0 | |
self.unicase = 0 | |
self.total = 0 | |
def box_iou(boxes_1: np.ndarray, boxes_2: np.ndarray) -> np.ndarray: | |
"""Computes the IoU between two sets of bounding boxes | |
Args: | |
---- | |
boxes_1: bounding boxes of shape (N, 4) in format (xmin, ymin, xmax, ymax) | |
boxes_2: bounding boxes of shape (M, 4) in format (xmin, ymin, xmax, ymax) | |
Returns: | |
------- | |
the IoU matrix of shape (N, M) | |
""" | |
iou_mat: np.ndarray = np.zeros((boxes_1.shape[0], boxes_2.shape[0]), dtype=np.float32) | |
if boxes_1.shape[0] > 0 and boxes_2.shape[0] > 0: | |
l1, t1, r1, b1 = np.split(boxes_1, 4, axis=1) | |
l2, t2, r2, b2 = np.split(boxes_2, 4, axis=1) | |
left = np.maximum(l1, l2.T) | |
top = np.maximum(t1, t2.T) | |
right = np.minimum(r1, r2.T) | |
bot = np.minimum(b1, b2.T) | |
intersection = np.clip(right - left, 0, np.Inf) * np.clip(bot - top, 0, np.Inf) | |
union = (r1 - l1) * (b1 - t1) + ((r2 - l2) * (b2 - t2)).T - intersection | |
iou_mat = intersection / union | |
return iou_mat | |
def polygon_iou(polys_1: np.ndarray, polys_2: np.ndarray) -> np.ndarray: | |
"""Computes the IoU between two sets of rotated bounding boxes | |
Args: | |
---- | |
polys_1: rotated bounding boxes of shape (N, 4, 2) | |
polys_2: rotated bounding boxes of shape (M, 4, 2) | |
mask_shape: spatial shape of the intermediate masks | |
use_broadcasting: if set to True, leverage broadcasting speedup by consuming more memory | |
Returns: | |
------- | |
the IoU matrix of shape (N, M) | |
""" | |
if polys_1.ndim != 3 or polys_2.ndim != 3: | |
raise AssertionError("expects boxes to be in format (N, 4, 2)") | |
iou_mat = np.zeros((polys_1.shape[0], polys_2.shape[0]), dtype=np.float32) | |
shapely_polys_1 = [Polygon(poly) for poly in polys_1] | |
shapely_polys_2 = [Polygon(poly) for poly in polys_2] | |
for i, poly1 in enumerate(shapely_polys_1): | |
for j, poly2 in enumerate(shapely_polys_2): | |
intersection_area = poly1.intersection(poly2).area | |
union_area = poly1.area + poly2.area - intersection_area | |
iou_mat[i, j] = intersection_area / union_area | |
return iou_mat | |
def nms(boxes: np.ndarray, thresh: float = 0.5) -> List[int]: | |
"""Perform non-max suppression, borrowed from <https://github.com/rbgirshick/fast-rcnn>`_. | |
Args: | |
---- | |
boxes: np array of straight boxes: (*, 5), (xmin, ymin, xmax, ymax, score) | |
thresh: iou threshold to perform box suppression. | |
Returns: | |
------- | |
A list of box indexes to keep | |
""" | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
scores = boxes[:, 4] | |
areas = (x2 - x1) * (y2 - y1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1) | |
h = np.maximum(0.0, yy2 - yy1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return keep | |
class LocalizationConfusion: | |
r"""Implements common confusion metrics and mean IoU for localization evaluation. | |
The aggregated metrics are computed as follows: | |
.. math:: | |
\forall Y \in \mathcal{B}^N, \forall X \in \mathcal{B}^M, \\ | |
Recall(X, Y) = \frac{1}{N} \sum\limits_{i=1}^N g_{X}(Y_i) \\ | |
Precision(X, Y) = \frac{1}{M} \sum\limits_{i=1}^M g_{X}(Y_i) \\ | |
meanIoU(X, Y) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]} IoU(X_i, Y_j) | |
with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and | |
:math:`y`, and the function :math:`g_{X}` defined as: | |
.. math:: | |
\forall y \in \mathcal{B}, | |
g_X(y) = \left\{ | |
\begin{array}{ll} | |
1 & \mbox{if } y\mbox{ has been assigned to any }(X_i)_i\mbox{ with an }IoU \geq 0.5 \\ | |
0 & \mbox{otherwise.} | |
\end{array} | |
\right. | |
where :math:`\mathcal{B}` is the set of possible bounding boxes, | |
:math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers. | |
>>> import numpy as np | |
>>> from doctr.utils import LocalizationConfusion | |
>>> metric = LocalizationConfusion(iou_thresh=0.5) | |
>>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]])) | |
>>> metric.summary() | |
Args: | |
---- | |
iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match | |
use_polygons: if set to True, predictions and targets will be expected to have rotated format | |
""" | |
def __init__( | |
self, | |
iou_thresh: float = 0.5, | |
use_polygons: bool = False, | |
) -> None: | |
self.iou_thresh = iou_thresh | |
self.use_polygons = use_polygons | |
self.reset() | |
def update(self, gts: np.ndarray, preds: np.ndarray) -> None: | |
"""Updates the metric | |
Args: | |
---- | |
gts: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones | |
preds: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones | |
""" | |
if preds.shape[0] > 0: | |
# Compute IoU | |
if self.use_polygons: | |
iou_mat = polygon_iou(gts, preds) | |
else: | |
iou_mat = box_iou(gts, preds) | |
self.tot_iou += float(iou_mat.max(axis=0).sum()) | |
# Assign pairs | |
gt_indices, pred_indices = linear_sum_assignment(-iou_mat) | |
self.matches += int((iou_mat[gt_indices, pred_indices] >= self.iou_thresh).sum()) | |
# Update counts | |
self.num_gts += gts.shape[0] | |
self.num_preds += preds.shape[0] | |
def summary(self) -> Tuple[Optional[float], Optional[float], Optional[float]]: | |
"""Computes the aggregated metrics | |
Returns | |
------- | |
a tuple with the recall, precision and meanIoU scores | |
""" | |
# Recall | |
recall = self.matches / self.num_gts if self.num_gts > 0 else None | |
# Precision | |
precision = self.matches / self.num_preds if self.num_preds > 0 else None | |
# mean IoU | |
mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None | |
return recall, precision, mean_iou | |
def reset(self) -> None: | |
self.num_gts = 0 | |
self.num_preds = 0 | |
self.matches = 0 | |
self.tot_iou = 0.0 | |
class OCRMetric: | |
r"""Implements an end-to-end OCR metric. | |
The aggregated metrics are computed as follows: | |
.. math:: | |
\forall (B, L) \in \mathcal{B}^N \times \mathcal{L}^N, | |
\forall (\hat{B}, \hat{L}) \in \mathcal{B}^M \times \mathcal{L}^M, \\ | |
Recall(B, \hat{B}, L, \hat{L}) = \frac{1}{N} \sum\limits_{i=1}^N h_{B,L}(\hat{B}_i, \hat{L}_i) \\ | |
Precision(B, \hat{B}, L, \hat{L}) = \frac{1}{M} \sum\limits_{i=1}^M h_{B,L}(\hat{B}_i, \hat{L}_i) \\ | |
meanIoU(B, \hat{B}) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]} IoU(\hat{B}_i, B_j) | |
with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and | |
:math:`y`, and the function :math:`h_{B, L}` defined as: | |
.. math:: | |
\forall (b, l) \in \mathcal{B} \times \mathcal{L}, | |
h_{B,L}(b, l) = \left\{ | |
\begin{array}{ll} | |
1 & \mbox{if } b\mbox{ has been assigned to a given }B_j\mbox{ with an } \\ | |
& IoU \geq 0.5 \mbox{ and that for this assignment, } l = L_j\\ | |
0 & \mbox{otherwise.} | |
\end{array} | |
\right. | |
where :math:`\mathcal{B}` is the set of possible bounding boxes, | |
:math:`\mathcal{L}` is the set of possible character sequences, | |
:math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers. | |
>>> import numpy as np | |
>>> from doctr.utils import OCRMetric | |
>>> metric = OCRMetric(iou_thresh=0.5) | |
>>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]]), | |
>>> ['hello'], ['hello', 'world']) | |
>>> metric.summary() | |
Args: | |
---- | |
iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match | |
use_polygons: if set to True, predictions and targets will be expected to have rotated format | |
""" | |
def __init__( | |
self, | |
iou_thresh: float = 0.5, | |
use_polygons: bool = False, | |
) -> None: | |
self.iou_thresh = iou_thresh | |
self.use_polygons = use_polygons | |
self.reset() | |
def update( | |
self, | |
gt_boxes: np.ndarray, | |
pred_boxes: np.ndarray, | |
gt_labels: List[str], | |
pred_labels: List[str], | |
) -> None: | |
"""Updates the metric | |
Args: | |
---- | |
gt_boxes: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones | |
pred_boxes: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones | |
gt_labels: a list of N string labels | |
pred_labels: a list of M string labels | |
""" | |
if gt_boxes.shape[0] != len(gt_labels) or pred_boxes.shape[0] != len(pred_labels): | |
raise AssertionError( | |
"there should be the same number of boxes and string both for the ground truth " "and the predictions" | |
) | |
# Compute IoU | |
if pred_boxes.shape[0] > 0: | |
if self.use_polygons: | |
iou_mat = polygon_iou(gt_boxes, pred_boxes) | |
else: | |
iou_mat = box_iou(gt_boxes, pred_boxes) | |
self.tot_iou += float(iou_mat.max(axis=0).sum()) | |
# Assign pairs | |
gt_indices, pred_indices = linear_sum_assignment(-iou_mat) | |
is_kept = iou_mat[gt_indices, pred_indices] >= self.iou_thresh | |
# String comparison | |
for gt_idx, pred_idx in zip(gt_indices[is_kept], pred_indices[is_kept]): | |
_raw, _caseless, _anyascii, _unicase = string_match(gt_labels[gt_idx], pred_labels[pred_idx]) | |
self.raw_matches += int(_raw) | |
self.caseless_matches += int(_caseless) | |
self.anyascii_matches += int(_anyascii) | |
self.unicase_matches += int(_unicase) | |
self.num_gts += gt_boxes.shape[0] | |
self.num_preds += pred_boxes.shape[0] | |
def summary(self) -> Tuple[Dict[str, Optional[float]], Dict[str, Optional[float]], Optional[float]]: | |
"""Computes the aggregated metrics | |
Returns | |
------- | |
a tuple with the recall & precision for each string comparison and the mean IoU | |
""" | |
# Recall | |
recall = dict( | |
raw=self.raw_matches / self.num_gts if self.num_gts > 0 else None, | |
caseless=self.caseless_matches / self.num_gts if self.num_gts > 0 else None, | |
anyascii=self.anyascii_matches / self.num_gts if self.num_gts > 0 else None, | |
unicase=self.unicase_matches / self.num_gts if self.num_gts > 0 else None, | |
) | |
# Precision | |
precision = dict( | |
raw=self.raw_matches / self.num_preds if self.num_preds > 0 else None, | |
caseless=self.caseless_matches / self.num_preds if self.num_preds > 0 else None, | |
anyascii=self.anyascii_matches / self.num_preds if self.num_preds > 0 else None, | |
unicase=self.unicase_matches / self.num_preds if self.num_preds > 0 else None, | |
) | |
# mean IoU (overall detected boxes) | |
mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None | |
return recall, precision, mean_iou | |
def reset(self) -> None: | |
self.num_gts = 0 | |
self.num_preds = 0 | |
self.tot_iou = 0.0 | |
self.raw_matches = 0 | |
self.caseless_matches = 0 | |
self.anyascii_matches = 0 | |
self.unicase_matches = 0 | |
class DetectionMetric: | |
r"""Implements an object detection metric. | |
The aggregated metrics are computed as follows: | |
.. math:: | |
\forall (B, C) \in \mathcal{B}^N \times \mathcal{C}^N, | |
\forall (\hat{B}, \hat{C}) \in \mathcal{B}^M \times \mathcal{C}^M, \\ | |
Recall(B, \hat{B}, C, \hat{C}) = \frac{1}{N} \sum\limits_{i=1}^N h_{B,C}(\hat{B}_i, \hat{C}_i) \\ | |
Precision(B, \hat{B}, C, \hat{C}) = \frac{1}{M} \sum\limits_{i=1}^M h_{B,C}(\hat{B}_i, \hat{C}_i) \\ | |
meanIoU(B, \hat{B}) = \frac{1}{M} \sum\limits_{i=1}^M \max\limits_{j \in [1, N]} IoU(\hat{B}_i, B_j) | |
with the function :math:`IoU(x, y)` being the Intersection over Union between bounding boxes :math:`x` and | |
:math:`y`, and the function :math:`h_{B, C}` defined as: | |
.. math:: | |
\forall (b, c) \in \mathcal{B} \times \mathcal{C}, | |
h_{B,C}(b, c) = \left\{ | |
\begin{array}{ll} | |
1 & \mbox{if } b\mbox{ has been assigned to a given }B_j\mbox{ with an } \\ | |
& IoU \geq 0.5 \mbox{ and that for this assignment, } c = C_j\\ | |
0 & \mbox{otherwise.} | |
\end{array} | |
\right. | |
where :math:`\mathcal{B}` is the set of possible bounding boxes, | |
:math:`\mathcal{C}` is the set of possible class indices, | |
:math:`N` (number of ground truths) and :math:`M` (number of predictions) are strictly positive integers. | |
>>> import numpy as np | |
>>> from doctr.utils import DetectionMetric | |
>>> metric = DetectionMetric(iou_thresh=0.5) | |
>>> metric.update(np.asarray([[0, 0, 100, 100]]), np.asarray([[0, 0, 70, 70], [110, 95, 200, 150]]), | |
>>> np.zeros(1, dtype=np.int64), np.array([0, 1], dtype=np.int64)) | |
>>> metric.summary() | |
Args: | |
---- | |
iou_thresh: minimum IoU to consider a pair of prediction and ground truth as a match | |
use_polygons: if set to True, predictions and targets will be expected to have rotated format | |
""" | |
def __init__( | |
self, | |
iou_thresh: float = 0.5, | |
use_polygons: bool = False, | |
) -> None: | |
self.iou_thresh = iou_thresh | |
self.use_polygons = use_polygons | |
self.reset() | |
def update( | |
self, | |
gt_boxes: np.ndarray, | |
pred_boxes: np.ndarray, | |
gt_labels: np.ndarray, | |
pred_labels: np.ndarray, | |
) -> None: | |
"""Updates the metric | |
Args: | |
---- | |
gt_boxes: a set of relative bounding boxes either of shape (N, 4) or (N, 5) if they are rotated ones | |
pred_boxes: a set of relative bounding boxes either of shape (M, 4) or (M, 5) if they are rotated ones | |
gt_labels: an array of class indices of shape (N,) | |
pred_labels: an array of class indices of shape (M,) | |
""" | |
if gt_boxes.shape[0] != gt_labels.shape[0] or pred_boxes.shape[0] != pred_labels.shape[0]: | |
raise AssertionError( | |
"there should be the same number of boxes and string both for the ground truth " "and the predictions" | |
) | |
# Compute IoU | |
if pred_boxes.shape[0] > 0: | |
if self.use_polygons: | |
iou_mat = polygon_iou(gt_boxes, pred_boxes) | |
else: | |
iou_mat = box_iou(gt_boxes, pred_boxes) | |
self.tot_iou += float(iou_mat.max(axis=0).sum()) | |
# Assign pairs | |
gt_indices, pred_indices = linear_sum_assignment(-iou_mat) | |
is_kept = iou_mat[gt_indices, pred_indices] >= self.iou_thresh | |
# Category comparison | |
self.num_matches += int((gt_labels[gt_indices[is_kept]] == pred_labels[pred_indices[is_kept]]).sum()) | |
self.num_gts += gt_boxes.shape[0] | |
self.num_preds += pred_boxes.shape[0] | |
def summary(self) -> Tuple[Optional[float], Optional[float], Optional[float]]: | |
"""Computes the aggregated metrics | |
Returns | |
------- | |
a tuple with the recall & precision for each class prediction and the mean IoU | |
""" | |
# Recall | |
recall = self.num_matches / self.num_gts if self.num_gts > 0 else None | |
# Precision | |
precision = self.num_matches / self.num_preds if self.num_preds > 0 else None | |
# mean IoU (overall detected boxes) | |
mean_iou = round(self.tot_iou / self.num_preds, 2) if self.num_preds > 0 else None | |
return recall, precision, mean_iou | |
def reset(self) -> None: | |
self.num_gts = 0 | |
self.num_preds = 0 | |
self.tot_iou = 0.0 | |
self.num_matches = 0 | |