Spaces:
Runtime error
Runtime error
File size: 3,108 Bytes
1e58367 bc5dfe0 1e58367 95255f1 1e58367 ba97523 1e58367 67fc4e8 65e5287 9e1896f 1e58367 fbfcc0e 65e5287 9808945 150c578 1e58367 bc5dfe0 1e58367 bc5dfe0 1e58367 fbfcc0e 066732d 1e58367 65e5287 1e58367 fbfcc0e 9e1896f 1e58367 88465f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import torch
import cv2
import gradio as gr
import numpy as np
from transformers import OwlViTProcessor, OwlViTForObjectDetection
# Use GPU if available
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
model.eval()
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
def query_image(img, text_queries, score_threshold):
text_queries = text_queries
text_queries = text_queries.split(",")
target_sizes = torch.Tensor([img.shape[:2]])
inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.cpu()
outputs.pred_boxes = outputs.pred_boxes.cpu()
results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
font = cv2.FONT_HERSHEY_SIMPLEX
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score >= score_threshold:
img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
if box[3] + 25 > 768:
y = box[3] - 10
else:
y = box[3] + 25
img = cv2.putText(
img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
)
return img
description = """
Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>, introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection with Vision Transformers</a>.
\n\nYou can use OWL-ViT to query images with text descriptions of any object. To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You can also use the score threshold slider to set a threshold to filter out low probability predictions.
\n\nOWL-ViT is trained on text templates, hence you can get better predictions by querying the image with text templates used in training the original model: *"photo of a star-spangled banner"*, *"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data. \n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
"""
demo = gr.Interface(
query_image,
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
outputs="image",
title="Zero-Shot Object Detection with OWL-ViT",
description=description,
examples=[
["assets/astronaut.png", "human face, rocket, star-spangled banner, nasa badge", 0.11],
["assets/coffee.png", "coffee mug, spoon, plate", 0.1],
["assets/butterflies.jpeg", "orange butterfly", 0.3],
],
)
demo.launch() |