xrayreport / inference.py
adithiyyha's picture
Update inference.py
e9e0f3e verified
raw
history blame
2.93 kB
import os
import torch
import config
import streamlit as st
from utils import (
load_dataset,
get_model_instance,
load_checkpoint,
can_load_checkpoint,
normalize_text,
)
from PIL import Image
import torchvision.transforms as transforms
# Define device
DEVICE = 'cpu'
# Define image transformations
TRANSFORMS = transforms.Compose([
transforms.Resize((224, 224)), # Replace with your model's expected input size
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def load_model():
"""
Loads the model with the vocabulary and checkpoint.
"""
st.write("Loading dataset and vocabulary...")
dataset = load_dataset() # Load dataset to access vocabulary
vocabulary = dataset.vocab # Assuming 'vocab' is an attribute of the dataset
st.write("Initializing the model...")
model = get_model_instance(vocabulary) # Initialize the model
if can_load_checkpoint():
st.write("Loading checkpoint...")
load_checkpoint(model)
else:
st.write("No checkpoint found, starting with untrained model.")
model.eval() # Set the model to evaluation mode
st.write("Model is ready for inference.")
return model
def preprocess_image(image_path):
"""
Preprocess the input image for the model.
"""
st.write(f"Preprocessing image: {image_path}")
image = Image.open(image_path).convert("RGB") # Ensure RGB format
image = TRANSFORMS(image).unsqueeze(0) # Add batch dimension
return image.to(DEVICE)
def generate_report(model, image_path):
"""
Generates a report for a given image using the model.
"""
image = preprocess_image(image_path)
st.write("Generating report...")
with torch.no_grad():
# Assuming the model has a 'generate_caption' method
output = model.generate_caption(image, max_length=25)
report = " ".join(output)
st.write(f"Generated report: {report}")
return report
# Streamlit app
def main():
st.title("Chest X-Ray Report Generator")
st.write("Upload a Chest X-Ray image to generate a medical report.")
# Upload image
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
st.write("")
# Save the uploaded file temporarily
image_path = "./temp_image.png"
with open(image_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.write("Image uploaded successfully.")
# Load the model
model = load_model()
# Generate report
report = generate_report(model, image_path)
st.write("### Generated Report:")
st.write(report)
# Clean up temporary file
os.remove(image_path)
if __name__ == "__main__":
main()