Spaces:
Sleeping
Sleeping
File size: 7,650 Bytes
469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 0baf4d0 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 469c254 81dd6cb 22d148d 81dd6cb 22d148d 81dd6cb 394decb 81dd6cb 469c254 81dd6cb 22d148d 469c254 81dd6cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('stopwords')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))
from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor
# Page config is set in main app.py
@st.cache_resource
def load_model_and_tokenizer():
"""Load the model and tokenizer (cached)."""
# Initialize model
model = HybridFakeNewsDetector(
bert_model_name=BERT_MODEL_NAME,
lstm_hidden_size=LSTM_HIDDEN_SIZE,
lstm_num_layers=LSTM_NUM_LAYERS,
dropout_rate=DROPOUT_RATE
)
# Load trained weights
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
# Filter out unexpected keys
model_state_dict = model.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
# Load the filtered state dict
model.load_state_dict(filtered_state_dict, strict=False)
model.eval()
# Initialize tokenizer
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
return model, tokenizer
@st.cache_resource
def get_preprocessor():
"""Get the text preprocessor (cached)."""
return TextPreprocessor()
def predict_news(text):
"""Predict if the given news is fake or real."""
# Get model, tokenizer, and preprocessor from cache
model, tokenizer = load_model_and_tokenizer()
preprocessor = get_preprocessor()
# Preprocess text
processed_text = preprocessor.preprocess_text(text)
# Tokenize
encoding = tokenizer.encode_plus(
processed_text,
add_special_tokens=True,
max_length=MAX_SEQUENCE_LENGTH,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
# Get prediction
with torch.no_grad():
outputs = model(
encoding['input_ids'],
encoding['attention_mask']
)
probabilities = torch.softmax(outputs['logits'], dim=1)
prediction = torch.argmax(outputs['logits'], dim=1)
attention_weights = outputs['attention_weights']
# Convert attention weights to numpy and get the first sequence
attention_weights_np = attention_weights[0].cpu().numpy()
return {
'prediction': prediction.item(),
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
'confidence': torch.max(probabilities, dim=1)[0].item(),
'probabilities': {
'REAL': probabilities[0][0].item(),
'FAKE': probabilities[0][1].item()
},
'attention_weights': attention_weights_np
}
def plot_confidence(probabilities):
"""Plot prediction confidence."""
fig = go.Figure(data=[
go.Bar(
x=list(probabilities.keys()),
y=list(probabilities.values()),
text=[f'{p:.2%}' for p in probabilities.values()],
textposition='auto',
)
])
fig.update_layout(
title='Prediction Confidence',
xaxis_title='Class',
yaxis_title='Probability',
yaxis_range=[0, 1]
)
return fig
def plot_attention(text, attention_weights):
"""Plot attention weights."""
tokens = text.split()
attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
# Ensure attention weights are in the correct format
if isinstance(attention_weights, (list, np.ndarray)):
attention_weights = np.array(attention_weights).flatten()
# Format weights for display
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
fig = go.Figure(data=[
go.Bar(
x=tokens,
y=attention_weights,
text=formatted_weights,
textposition='auto',
)
])
fig.update_layout(
title='Attention Weights',
xaxis_title='Tokens',
yaxis_title='Attention Weight',
xaxis_tickangle=45
)
return fig
def main():
st.title("📰 Fake News Detection System")
st.write("""
This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
to detect fake news articles. Enter a news article below to analyze it.
""")
# Sidebar
st.sidebar.title("About")
st.sidebar.info("""
The model combines:
- BERT for contextual embeddings
- BiLSTM for sequence modeling
- Attention mechanism for interpretability
""")
# Main content
st.header("News Analysis")
# Text input
news_text = st.text_area(
"Enter the news article to analyze:",
height=200,
placeholder="Paste your news article here..."
)
if st.button("Analyze"):
if news_text:
with st.spinner("Analyzing the news article..."):
# Get prediction
result = predict_news(news_text)
# Display result
col1, col2 = st.columns(2)
with col1:
st.subheader("Prediction")
if result['label'] == 'FAKE':
st.error(f"🔴 This news is likely FAKE (Confidence: {result['confidence']:.2%})")
else:
st.success(f"🟢 This news is likely REAL (Confidence: {result['confidence']:.2%})")
with col2:
st.subheader("Confidence Scores")
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
# Show attention visualization
st.subheader("Attention Analysis")
st.write("""
The attention weights show which parts of the text the model focused on
while making its prediction. Higher weights indicate more important tokens.
""")
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
# Show model explanation
st.subheader("Model Explanation")
if result['label'] == 'FAKE':
st.write("""
The model identified this as fake news based on:
- Linguistic patterns typical of fake news
- Inconsistencies in the content
- Attention weights on suspicious phrases
""")
else:
st.write("""
The model identified this as real news based on:
- Credible language patterns
- Consistent information
- Attention weights on factual statements
""")
else:
st.warning("Please enter a news article to analyze.")
if __name__ == "__main__":
main() |